Skip to main content
Log in

Protective Role of lncRNA TTN-AS1 in Sepsis-Induced Myocardial Injury Via miR-29a/E2F2 Axis

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Objective

Approximately 50% of patients with sepsis encounter myocardial injury. The mortality of septic patients with cardiac dysfunction (approx. 70%) is much higher than that of patients with sepsis only (20%). A large number of studies have suggested that lncRNA TTN-AS1 promotes cell proliferation in a variety of diseases. This study delves into the function and mechanism of TTN-AS1 in sepsis-induced myocardial injury in vitro and in vivo.

Methods

LPS was used to induce sepsis in rats and H9c2 cells. Cardiac function of rats was assessed by an ultrasound system. Myocardial injury was revealed by hematoxylin-eosin (H&E) staining. Gain and loss of function of TTN-AS1, miR-29a, and E2F2 was achieved in H9c2 cells before LPS treatment. The expression levels of inflammatory cytokines and cTnT were monitored by ELISA. The expression levels of cardiac enzymes as well as reactive oxygen species (ROS) activity and mitochondrial membrane potential (MMP) were measured using the colorimetric method. The expression levels of TTN-AS1, miR-29a, E2F2, and apoptosis-related proteins were measured by RT-qPCR and/or western blotting. The proliferation and apoptosis of H9c2 cells were separately detected by CCK-8 and flow cytometry. Luciferase reporter assay was used to verify the targeting relationships among TTN-AS1, miR-29a and E2F2, and RIP assay was further used to confirm the binding between miR-29a and E2F2.

Results

TTN-AS1 was lowly expressed, while miR-29a was overexpressed in the cell and animal models of sepsis. Overexpression of TTN-AS1 or silencing of miR-29a reduced the expression levels of CK, CK-MB, LDH, TNF-B, IL-1B, and IL-6 in the supernatant of LPS-induced H9c2 cells, attenuated mitochondrial ROS activity, and enhanced MMP. Consistent results were observed in septic rats injected with OE-TTN-AS1. Knockdown of TTN-AS1 or overexpression of miR-29a increased LPS-induced inflammation and injury in H9c2 cells. TTN-AS1 regulated the expression of E2F2 by targeting miR-29a. Overexpression of miR-29a or inhibition of E2F2 abrogated the suppressive effect of TTN-AS1 overexpression on myocardial injury.

Conclusion

This study indicates TTN-AS1 attenuates sepsis-induced myocardial injury by regulating the miR-29a/E2F2 axis and sheds light on lncRNA-based treatment of sepsis-induced cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(315):775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun F, Yuan W, Wu H, Chen G, Sun Y, Yuan L, et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis. Exp Biol Med (Maywood). 2020;245(245):620–30.

    Article  CAS  Google Scholar 

  3. Hochstadt A, Meroz Y, Landesberg G. Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? J Cardiothorac Vasc Anesth. 2011;25(25):526–35.

    Article  PubMed  Google Scholar 

  4. Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016;4(4):22.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jiang W, Li W, Hu X, Hu R, Li B, Lan L. CTRP1 prevents sepsis-induced cardiomyopathy via Sirt1-dependent pathways. Free Radic Biol Med. 2020;152(152):810–20.

    Article  CAS  PubMed  Google Scholar 

  6. Jia P, Wu N, Jia D, Sun Y. Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-kappaB axis. Diabetes Metab Syndr Obes. 2019;12(12):655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(136):629–41.

    Article  CAS  PubMed  Google Scholar 

  8. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(472):120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Cao L, Wang Q, Huang J, Xu S. LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol. 2019;47(47):1241–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cui Z, Han B, Wang X, Li Z, Wang J, Lv Y. Long non-coding RNA TTN-AS1 promotes the proliferation and invasion of colorectal cancer cells by activating miR-497-mediated PI3K/Akt/mTOR signaling. Onco Targets Ther. 2019;12(12):11531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 regulates miR-524-5p and RRM2 to promote breast cancer progression. Onco Targets Ther. 2020;13(13):4799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu D, Lu C, Qu X, Li P, Chen K, Shan L, et al. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY). 2019;11(11):8374–85.

    Article  CAS  Google Scholar 

  13. Miao S, Wang J, Xuan L, Liu X. LncRNA TTN-AS1 acts as sponge for miR-15b-5p to regulate FBXW7 expression in ovarian cancer. Biofactors. 2020;https://doi.org/10.1002/biof.1622.

  14. Chen H, Wang X, Yan X, Cheng X, He X, Zheng W. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFkappaB. Int Immunopharmacol. 2018;55(55):69–76.

    Article  CAS  PubMed  Google Scholar 

  15. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 2017;15(15):177–86.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(91):827–87.

    Article  CAS  PubMed  Google Scholar 

  17. Vasilescu C, Dragomir M, Tanase M, Giza D, Purnichescu-Purtan R, Chen M, et al. Circulating miRNAs in sepsis-a network under attack: An in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS One. 2017;12(12):e0183334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One. 2012;7(7):e38885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen ZF, Wang Y, Sun LL, Ding SY, Jinag H. LncRNA SNHG20 enhances the progression of oral squamous cell carcinoma by regulating the miR-29a/DIXDC1/Wnt regulatory axis. Eur Rev Med Pharmacol Sci. 2020;24(24):5436–45.

    PubMed  Google Scholar 

  20. Shi X, Valizadeh A, Mir SM, Asemi Z, Karimian A, Majidina M, et al. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur J Pharmacol. 2020;880(880):173138.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, et al. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res. 2020;12(12):1136–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu X, Pu S, Ling C, Xu J, Wang J, Sun S, et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1alpha pathway. Cell Prolif. 2020;53(53):e12818.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thurlings I, de Bruin A. E2F transcription factors control the roller coaster ride of cell cycle gene expression. Methods Mol Biol. 2016;1342(1342):71–88.

    Article  PubMed  Google Scholar 

  24. Steven S, Hausding M, Kroller-Schon S, Mader M, Mikhed Y, Stamm P, et al. Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia. Basic Res Cardiol. 2015;110(110):6.

    Article  PubMed  CAS  Google Scholar 

  25. He Y, Zhou L, Fan Z, Liu S, Fang W. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by Nacetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. Cell Death Dis. 2018;9(9):568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. An R, Feng J, Xi C, Xu J, Sun L. miR-146a attenuates Sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxidative Med Cell Longev. 2018;2018(2018):7163057.

    Google Scholar 

  27. Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 2020;160(160):303–18.

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Chen L, Yu H, Liu H, An W. Transfection of hepatic stimulator substance gene desensitizes hepatoma cells to H2O2-induced cell apoptosis via preservation of mitochondria. Arch Biochem Biophys. 2007;464(464):48–56.

    Article  CAS  PubMed  Google Scholar 

  29. Burja B, Kuret T, Janko T, Topalovic D, Zivkovic L, Mrak-Poljsak K, et al. Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Front Cardiovasc Med. 2019;6(6):56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-induced cardiomyopathy: mechanisms and treatments. Front Immunol. 2017;8(8):1021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jia Y, Duan Y, Liu T, Wang X, Lv W, Wang M, et al. LncRNA TTN-AS1 promotes migration, invasion, and epithelial mesenchymal transition of lung adenocarcinoma via sponging miR-142-5p to regulate CDK5. Cell Death Dis. 2019;10(10):573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lin C, Zhang S, Wang Y, Wang Y, Nice E, Guo C, et al. Functional role of a novel long noncoding RNA TTN-AS1 in esophageal squamous cell carcinoma progression and metastasis. Clin Cancer Res. 2018;24(24):486–98.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Wang P, Liang C, He D, Yu Y, Liu X. Distinct effects of Nampt inhibition on mild and severe models of lipopolysaccharide-induced myocardial impairment. Int Immunopharmacol. 2013;17(17):342–9.

    Article  CAS  PubMed  Google Scholar 

  34. Huang Q, Huang C, Luo Y, He F, Zhang R. Circulating lncRNA NEAT1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. Am J Emerg Med. 2018;36(36):1659–63.

    Article  PubMed  Google Scholar 

  35. Mai C, Qiu L, Zeng Y, Jian HG. LncRNA Lethe protects sepsis-induced brain injury via regulating autophagy of cortical neurons. Eur Rev Med Pharmacol Sci. 2019;23(23):4858–64.

    CAS  PubMed  Google Scholar 

  36. Wang SM, Liu GQ, Xian HB, Si JL, Qi SX, Yu YP. LncRNA NEAT1 alleviates sepsis-induced myocardial injury by regulating the TLR2/NF-kappaB signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):4898–907.

    PubMed  Google Scholar 

  37. Zhu H, Zhai B, He C, Li Z, Gao H, Niu Z, et al. LncRNA TTN-AS1 promotes the progression of cholangiocarcinoma via the miR-320a/neuropilin-1 axis. Cell Death Dis. 2020;11(11):637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Jiang F, Xiong Y, Cheng X, Qiu Z, Song R. LncRNA TTN-AS1 sponges miR-376a-3p to promote colorectal cancer progression via upregulating KLF15. Life Sci. 2020;244(244):116936.

    Article  CAS  PubMed  Google Scholar 

  39. Shen L, Wu Y, Li A, Li L, Shen L, Jiang Q, et al. LncRNA TTNAS1 promotes endometrial cancer by sponging miR376a3p. Oncol Rep. 2020;44(44):1343–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang K, Wang G, Lou J, Hao S, Lv R, Duan D, et al. lncRNA TTNAS1 upregulates RUNX1 to enhance glioma progression via sponging miR27b3p. Oncol Rep. 2020;44(44):1064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen JX, Xu X, Zhang S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life. 2019;71(71):956–68.

    CAS  PubMed  Google Scholar 

  42. Zhu Y, Sun A, Meng T, Li H. Protective role of long noncoding RNA CRNDE in myocardial tissues from injury caused by sepsis through the microRNA-29a/SIRT1 axis. Life Sci. 2020;255(255):117849.

    Article  CAS  PubMed  Google Scholar 

  43. Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, et al. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/ NF-kappaB pathway. Exp Cell Res. 2017;360(360):74–80.

    Article  CAS  PubMed  Google Scholar 

  44. Luo YY, Yang ZQ, Lin XF, Zhao FL, Tu HT, Wang LJ, et al. Knockdown of lncRNA PVT1 attenuated macrophage M1 polarization and relieved sepsis induced myocardial injury via miR-29a/HMGB1 axis. Cytokine. 2021;143(143):155509.

    Article  CAS  PubMed  Google Scholar 

  45. Song YX, Ou YM, Zhou JY. Gracillin inhibits apoptosis and inflammation induced by lipopolysaccharide (LPS) to alleviate cardiac injury in mice via improving miR-29a. Biochem Biophys Res Commun. 2020;523(523):580–7.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Y, Ma X, Yao Y, Li H, Fan Y, Zhang Y, et al. miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2. Oncotarget. 2016;7(7):20324–37.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li T, Yang J, Lv X, Liu K, Gao C, Xing Y, et al. miR-155 regulates the proliferation and cell cycle of colorectal carcinoma cells by targeting E2F2. Biotechnol Lett. 2014;36(36):1743–52.

    Article  CAS  PubMed  Google Scholar 

  48. Hu Y, Jin G, Li B, Chen Y, Zhong L, Chen G, et al. Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci (Lond). 2019;133(133):425–41.

    Article  CAS  Google Scholar 

  49. Ponnusamy M, Li PF, Wang K. Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci. 2017;74(74):1019–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks is given to all the contributors and participants.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

LW and PXH conceived the ideas. LW and PXH designed the experiments. PXH and WYH performed the experiments. YHM and LYJ analyzed the data. LW, ZX, and LYJ provided critical materials. WYH and YHM wrote the manuscript. LW supervised the study. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Wu Lu.

Ethics declarations

Ethics Approval and Consent to Participate

This experimental scheme was approved by the ethical committee of Hunan Provincial People’s Hospital. All experiments were performed in accordance with the international guidelines for the care and use of laboratory animals recommended by the National Institutes of Health (NIH Publication No.85–23, revised 1996).

Competing Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Wu, Y., Yu, H. et al. Protective Role of lncRNA TTN-AS1 in Sepsis-Induced Myocardial Injury Via miR-29a/E2F2 Axis. Cardiovasc Drugs Ther 36, 399–412 (2022). https://doi.org/10.1007/s10557-021-07244-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07244-5

Keywords

Navigation