Skip to main content
Log in

From lakes and glades to viability algorithms: automatic classification of system states according to the topology of sustainable management

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The framework Topology of Sustainable Management by Heitzig et al. (Earth Syst Dyn 7:21. https://doi.org/10.5194/esd-7-21-2016, 2016) distinguishes qualitatively different regions in state space of dynamical models representing manageable systems with default dynamics. In this paper, we connect the framework to viability theory by defining its main components based on viability kernels and capture basins. This enables us to use the Saint-Pierre algorithm to visualize the shape and calculate the volume of the main partition of the Topology of Sustainable Management. We present an extension of the algorithm to compute implicitly defined capture basins. To demonstrate the applicability of our approach, we introduce a low-complexity model coupling environmental and socioeconomic dynamics. With this example, we also address two common estimation problems: an unbounded state space and highly varying time scales. We show that appropriate coordinate transformations can solve these problems. It is thus demonstrated how algorithmic approaches from viability theory can be used to get a better understanding of the state space of manageable dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data necessary for reproducing the results presented in this manuscript is available from the above mentioned repositories.]

Notes

  1. Here and in the following we use the lax difference and union notation with “−” and “\(+\)” for sets.

  2. Often, a regular grid with resolution h is chosen for this discretization, but this is by no means a necessity. We use a regular grid because we already apply a coordinate transformation (see Sect. 4.2) that best resolves the scales of interest in our model.

  3. Because of the discretization of state space and time in the estimation, Fig. 7a suggests that the bifurcation occurs already at \(\approx 2.8\%\)/a. However, this is a numerical inaccuracy.

References

  1. J. Rockström, W.L. Steffen, K. Noone, A. Persson, F.S. Chapin III., E. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber et al., Ecol. Soc. 14, 32 (2009). https://doi.org/10.5751/es-03180-140232

  2. W. Steffen, K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, W. de Vries, C.A. de Wit, C. Folke, D. Gerten, J. Heinke, G.M. Mace, L.M. Persson, V. Ramanathan, B. Reyers, S. Sorlin, Science 347, 1259855 (2015). https://doi.org/10.1126/science.1259855

    Article  Google Scholar 

  3. K. Raworth, A Safe and Just Space For Humanity: Can we live within the Doughnut? Oxfam Discussion Paper (2012). https://oxfamilibrary.openrepository.com/bitstream/handle/10546/210490/dp-a-safe-and-just-space-for-humanity-130212-en.pdf

  4. D. Gerten, H. Hoff, J. Rockström, J. Jägermeyr, M. Kummu, A.V. Pastor, Curr. Opin. Environ. Sustain. 5, 551 (2013). https://doi.org/10.1016/j.cosust.2013.11.001

  5. S.R. Carpenter, E.M. Bennett, Environ. Res. Lett. 6, 014009 (2011). https://doi.org/10.1088/1748-9326/6/1/014009

  6. T. Häyhä, P.L. Lucas, D.P. van Vuuren, S.E. Cornell, H. Hoff, Glob. Environ. Change 40, 60 (2016). https://doi.org/10.1016/j.gloenvcha.2016.06.008

    Article  Google Scholar 

  7. S.W. Running, Science 337, 1458 (2012). https://doi.org/10.1126/science.1227620

  8. J.M. Anderies, S.R. Carpenter, W. Steffen, J. Rockström, Environ. Res. Lett. 8, 044048 (2013). https://doi.org/10.1088/1748-9326/8/4/044048

    Article  ADS  Google Scholar 

  9. V. Heck, J.F. Donges, W. Lucht, Earth Syst. Dyn. 7, 783 (2016). https://doi.org/10.5194/esd-7-783-2016

    Article  ADS  Google Scholar 

  10. J.-P. Aubin, G. Da Prato, Annali della Scuola Normale Superiore di Pisa Classe di Scienze 17, 595 (1990)

    Google Scholar 

  11. J. Aubin, Viability Theory. Systems & Control: Foundations & Applications (Birkhäuser, Boston, 1991). https://doi.org/10.1007/978-0-8176-4910-4

  12. J.-P. Aubin, A. Bayen, P. Saint-Pierre, Viability Theory: New Directions (Springer, 2011). https://doi.org/10.1007/978-3-642-16684-6

  13. J.-P. Aubin, A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften, vol. 264 (Springer-Verlag, Berlin, Heidelberg, 1984). https://doi.org/10.1007/978-3-642-69512-4

  14. J.P. Aubin, Dynamic Economic Theory: A Viability Approach, vol. 5 (Springer Verlag, Berlin, Heidelberg, 1997). https://www.springer.com/de/book/9783642645426

  15. C.T. Kone, J.D. Mathias, G. DeSousa, PLoS One 12, e8681 (2017). https://doi.org/10.1371/journal.pone.0172336

  16. L. Chapel, X. Castelló, C. Bernard, G. Deffuant, V.M. Eguiluz, S. Martin, M. San-Miguel, PLoS One 5, e8681 (2010). https://doi.org/10.1371/journal.pone.0008681

    Article  ADS  Google Scholar 

  17. J.-D. Mathias, S. Lade, V. Galaz, Int. J. Commons 11, 220 (2017). https://doi.org/10.18352/ijc.695

    Article  Google Scholar 

  18. S. Martin, Ecol. Soc. 9 (2004). https://doi.org/10.5751/es-00659-090208

  19. G. Deffuant, N. Gilbert (eds.), Viability and Resilience of Complex Systems: Concepts, Methods and Case Studies from Ecology and Society (Springer, 2011). https://doi.org/10.1007/978-3-642-20423-4

  20. C. Rougé, J.-D. Mathias, G. Deffuant, Ecol. Indic. 29, 420 (2013). https://doi.org/10.1016/j.ecolind.2012.12.032

    Article  Google Scholar 

  21. M. Delara, L. Doyen, Sustainable Management of Natural Resources. Mathematical Models and Methods (Springer, 2008). https://doi.org/10.1007/978-3-540-79074-7

  22. S. Baumgärtner, M.F. Quaas, Ecol. Econ. 68, 2008 (2009). https://doi.org/10.1016/j.ecolecon.2009.01.016

    Article  Google Scholar 

  23. A. Oubraham, G. Zaccour, Ecol. Econ. 145, 346 (2018). https://doi.org/10.1016/j.ecolecon.2017.11.008

    Article  Google Scholar 

  24. P.M. Cury, C. Mullon, S.M. Garcia, L.J. Shannon, ICES J. Mar. Sci. 62, 430–442 (2005). https://doi.org/10.1016/j.icesjms.2004.12.006

  25. L. Chapel, G. Deffuant, S. Martin, C. Mullon, Ecol. Model. 212, 10 (2008). https://doi.org/10.1016/j.ecolmodel.2007.10.007

  26. L. Doyen, C. Béné, M. Bertignac, F. Blanchard, A.A. Cissé, C. Dichmont, S. Gourguet, O. Guyader, P.Y. Hardy, S. Jennings, L.R. Little, C. Macher, D.J. Mills, A. Noussair, S. Pascoe, J.C. Pereau, N. Sanz, A.M. Schwarz, T. Smith, O. Thébaud, Fish Fish. 18, 1056 (2017). https://doi.org/10.1111/faf.12224

    Article  Google Scholar 

  27. A. Schuhbauer, U.R. Sumaila, Ecol. Econ. 124, 69 (2016). https://doi.org/10.1016/j.ecolecon.2016.01.018

    Article  Google Scholar 

  28. B.D. Richter, R. Mathews, D.L. Harrison, R. Wigington, Ecol. Appl. 13, 206 (2003). https://doi.org/10.1890/1051-0761(2003)013[0206:ESWMMR]2.0.CO;2

  29. J. Mathias, B. Bonté, T. Cordonnier, F. DeMorogues, Environ. Manag. 56, 1170 (2015). https://doi.org/10.1007/s00267-015-0555-4

  30. L. Doyen, A. Cissé, S. Gourguet, L. Mouysset, P.Y. Hardy, C. Béné, F. Blanchard, F. Jiguet, J.C. Pereau, O. Thébaud, Comput. Manag. Sci. 10, 353 (2013). https://doi.org/10.1007/s10287-013-0194-2

    Article  MathSciNet  Google Scholar 

  31. J. Mathias, J. Anderies, M. Janssen, Sci. Rep. 7, 42061 (2017). https://doi.org/10.1038/srep42061

  32. J.D. Mathias, J.M. Anderies, M. Janssen, Earth’s Future 6, 1555 (2018). https://doi.org/10.1029/2018EF000852

    Article  ADS  Google Scholar 

  33. J.M. Anderies, J.D. Mathias, M.A. Janssen, Proc. Natl. Acad. Sci. USA 116, 5277 (2019). https://doi.org/10.1073/pnas.1802885115

    Article  Google Scholar 

  34. L. Doyen, V. Martinet, J. Econ. Dyn. Control 36, 1414 (2012). https://doi.org/10.1016/j.jedc.2012.03.004

    Article  Google Scholar 

  35. S. Martin, G. Deffuant, J.M. Calabrese, Defining resilience mathematically: from attractors to viability, in Viability and Resilience of Complex Systems: Concepts, Methods and Case Studies from Ecology and Society, ed. by G. Deffuant, N. Gilbert (Springer, Berlin, Heidelberg, 2011), pp. 15–36. https://doi.org/10.1007/978-3-642-20423-4_2

  36. L. Chapel, G. Deffuant, Approximating viability kernels and resilience values: algorithms and practical issues illustrated with kaviar software, in Viability and Resilience of Complex Systems: Concepts, Methods and Case Studies from Ecology and Society, ed. by G. Deffuant, N. Gilbert (Springer, Berlin, Heidelberg, 2011), pp. 161–192. https://doi.org/10.1007/978-3-642-20423-4_7

  37. J. Heitzig, T. Kittel, J.F. Donges, N. Molkenthin, Earth Syst. Dyn. 7, 21 (2016). https://doi.org/10.5194/esd-7-21-2016

    Article  ADS  Google Scholar 

  38. P. Saint-Pierre, Appl. Math. Optim. 29, 187 (1994). https://doi.org/10.1007/BF01204182

  39. G. Deffuant, L. Chapel, S. Martin, IEEE Trans. Autom. Control 52, 933 (2007). https://doi.org/10.1109/TAC.2007.895881

  40. J.N. Maidens, S. Kaynama, I.M. Mitchell, M.M. Oishi, G.A. Dumont, Automatica 49, 2017 (2013). https://doi.org/10.1016/j.automatica.2013.03.020

    Article  Google Scholar 

  41. O. Bokanowski, S. Martin, R. Munos, H. Zidani, Appl. Numer. Math. 56, 1147 (2006). https://doi.org/10.1016/j.apnum.2006.03.004

    Article  MathSciNet  Google Scholar 

  42. M. Wiedermann, J.F. Donges, J. Heitzig, W. Lucht, J. Kurths, Phys. Rev. E 91, 052801 (2015). https://doi.org/10.1103/PhysRevE.91.052801

    Article  MathSciNet  ADS  Google Scholar 

  43. W. Barfuss, J.F. Donges, M. Wiedermann, W. Lucht, Earth Syst. Dyn. 8, 255 (2017). https://doi.org/10.5194/esd-8-255-2017

  44. S.J. Lade, S. Niiranen, J. Hentati-Sundberg, T. Blenckner, W.J. Boonstra, K. Orach, M.F. Quaas, H. Österblom, M. Schlüter, Proc. Natl. Acad. Sci. 112, 11120 (2015). https://doi.org/10.1073/pnas.1504954112

  45. O. Kellie-Smith, P.M. Cox, Phil. Trans. R. Soc. A. 369, 868 (1998). https://www.jstor.org/stable/116821

  46. J.A. Brander, S.M. Taylor, Am. Econ. Rev. 88, 119 (1998). http://www.jstor.org/stable/116821

  47. J. Nitzbon, J. Heitzig, U. Parlitz, Environ. Res. Lett. 12, 074020 (2017). https://doi.org/10.1088/1748-9326/aa7581

  48. F.M. Strnad, W. Barfuss, J.F. Donges, J. Heitzig, Chaos 29, 1 (2019). https://doi.org/10.1063/1.5124673

    Article  Google Scholar 

  49. J.P. Aubin, SIAM J. Control Optim. 40, 123122 (2001). https://doi.org/10.1137/S036301290036968X

    Article  Google Scholar 

  50. P. Saint-Pierre, in 2001 European Control conference (ecc) (IEEE, 2001), pp. 2776–2783. https://doi.org/10.23919/ECC.2001.7076351

  51. J. Krawczyk, A. Pharo, Math. Appl. 41, 97 (2013). https://doi.org/10.14708/ma.v41i1.409

    Article  Google Scholar 

  52. P. Coquelin, S. Martin, R. Munos, in IEEE ADPRL symposium on approximate dynamic programming and reinforcement learning (2007). https://doi.org/10.1109/ADPRL.2007.368186

  53. H. Frankowska, Appl. Math. Optim. 19, 291 (1989). https://doi.org/10.1007/BF01448202

  54. A.M. Bayen, E. Crück, C.J. Tomlin, in C.J. Tomlin, M.R. Greenstreet (eds) Hybrid Systems: Computation and Control. HSCC 2002. Lecture Notes in Computer Science, vol. 2289 (Springer, Berlin, Heidelberg, 2002). https://doi.org/10.1007/3-540-45873-5_10

  55. P. Cardaliaguet, M. Quincampoix, P. Saint-Pierre, in: M. Bardi, T.E.S. Raghavan, T. Parthasarathy (eds) Stochastic and Differential Games. Annals of the International Society of Dynamic Games, vol. 4 (Birkhäuser, Boston, MA, 1999). https://doi.org/10.1007/978-1-4612-1592-9_4

  56. M. Lhommeau, L. Jaulin, L. Hardouin, in Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO (2007), pp. 5–9. https://doi.org/10.5220/0001625800050009

  57. L. Chapel, G. Deffuant, in J.L. Ferrier, A. Bernard, O. Gusikhin, K. Madani (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 174 (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-31353-0_3

  58. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, 2nd edn (Springer, New York, NY, 1998). https://doi.org/10.1007/b98848

  59. M. Jakob, W.F. Lamb, J.C. Steckel, C. Flachsland, O. Edenhofer, Wiley Interdiscip. Rev. Climate Change 11, e677 (2020). https://doi.org/10.1002/wcc.677

  60. B. Nagy, J.D. Farmer, Q.M. Bui, J.E. Trancik, PLoS One 8, e52669 (2013). https://doi.org/10.1371/journal.pone.0052669

  61. R. Costanza, I. Kubiszewski, E. Giovannini, H. Lovins, J. McGlade, K.E. Pickett, K.V. Ragnarsdóttir, D. Roberts, R. De Vogli, R. Wilkinson, Nature 505, 283 (2014). https://doi.org/10.1038/505283a

    Article  Google Scholar 

  62. T. Jackson, Prosperity Without Growth: Foundations of the Economy of Tomorrow, 2nd edn. (Routledge, London, 2016)

    Book  Google Scholar 

  63. M. Schmelzer, The Hegemony of Growth. The OECD and the Making of the Economic Growth Paradigm (Cambridge University Press, Cambridge, 2016)

  64. R.A. Betts, C.D. Jones, J.R. Knight, R.F. Keeling, J.J. Kennedy, Nat. Climate Change 6, 806 (2016). https://doi.org/10.1038/nclimate3063

  65. The World Bank Group, GDP (current US\$). http://data.worldbank.org/indicator/NY.GDP.MKTP.CD. Accessed 17 Dec 2016

  66. Mongabay Organization, Carbon dioxide emissions charts (2005). http://rainforests.mongabay.com/09-carbon_emissions.htm. Accessed 17 Dec 2016

  67. P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013). https://doi.org/10.1038/nphys2516

  68. P.J. Menck, J. Heitzig, J. Kurths, H.J. Schellnhuber, Nat. Commun. 5, 3969 (2014). https://doi.org/10.1038/ncomms4969

    Article  ADS  Google Scholar 

  69. F. Hellmann, P. Schultz, C. Grabow, J. Heitzig, J. Kurths, Sci. Rep. 6, 29654 (2016). https://doi.org/10.1038/srep29654

    Article  ADS  Google Scholar 

  70. V.V. Klinshov, V.I. Nekorkin, J. Kurths, New J. Phys. 18, 013004 (2015). https://doi.org/10.1088/1367-2630/18/1/013004

  71. T. Kittel, J. Heitzig, K. Webster, J. Kurths, New J. Phys. 19, 083005 (2017). https://doi.org/10.1088/1367-2630/aa7b61

    Article  ADS  Google Scholar 

  72. C. Mitra, J. Kurths, R.V. Donner, Sci. Rep. 5, 16196 (2015). https://doi.org/10.1038/srep16196

    Article  ADS  Google Scholar 

  73. A. van Kan, J. Jegminat, J. F. Donges, and J. Kurths, Phys. Rev. E 93, 042205 (2016) https://doi.org/10.1103/PhysRevE.93.042205

  74. C. Mitra, A. Choudhary, S. Sinha, J. Kurths, R.V. Donner, Phys. Rev. E 95, 032317 (2017). https://doi.org/10.1103/PhysRevE.95.032317

  75. C. Mitra, T. Kittel, A. Choudhary, J. Kurths, R.V. Donner, New J. Phys. 19, 103004 (2017). https://doi.org/10.1088/1367-2630/aa7fab

    Article  MathSciNet  ADS  Google Scholar 

  76. J. Nitzbon, Bifurcation analysis and parameter estimation in low-dimensional models of global human-nature coevolution. MA thesis (Georg-August-Universität Göttingen, 2016)

  77. D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte, M. Perc, J. Stat. Phys. 158, 735 (2015). https://doi.org/10.1007/s10955-014-1024-9

  78. A. Brias, J. Mathias, G. Deffuant, Comput. Manag. Sci. 13, 371 (2016). https://doi.org/10.1007/s10287-015-0246-x

    Article  MathSciNet  Google Scholar 

  79. I. Alvarez, R. Reuillon, R. de Aldama, Viabilitree: A kd-tree Framework for Viability-based Decision, Working paper (2016). https://hal.archives-ouvertes.fr/hal-01319738

  80. V. Anishchenko, A. Neiman, T. Vadiavasova, V. Astakhov, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Developments, 2nd edn (Springer, Berlin, 2007)

  81. F. Müller-Hansen,, M. Schlüter, M. Mäs, J.F. Donges, J.J. Kolb, K. Thonicke, J. Heitzig, Earth Syst. Dyn. 8, 977 (2017). https://doi.org/10.5194/esd-8-977-2017

  82. J.F. Donges, J. Heitzig, W. Barfuss, M. Wiedermann, J.A. Kassel, T. Kittel, J.J. Kolb, T. Kolster, F. Müller-Hansen, I.M. Otto, K.B. Zimmerer, W. Lucht, Earth Syst. Dyn. 11, 395 (2020). https://doi.org/10.5194/esd-11-395-2020

  83. G. Van Rossum, F.L. Drake Jr, Python Reference Manual (Centrum voor Wiskunde en Informatica Amsterdam, 1995)

  84. D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, T. Oliphant, et al., Numerical Python (2001)

  85. E. Jones, T. Oliphant, P. Peterson, et al., SciPy: open source scientific tools for Python (2001). https://www.scipy.org

  86. P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C.L. Quéré, R. Myneni, S. Piao, P. Thornton, Carbon and Other Biogeochemical Cycles, in T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013). https://doi.org/10.1017/CBO9781107415324.015

  87. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley (Cambridge University Press, Cambridge, 2013). https://doi.org/10.1017/CBO9781107415324

  88. The World Bank Group, Energy intensity level of primary energy. http://data.worldbank.org/indicator/EG.EGY.PRIM.PP.KD. Accessed 11 Apr 2016

  89. E.S. Rubin, I.M.L. Azevedo, P. Jaramillo, S. Yeh, Energy Policy 86, 198 (2015). https://doi.org/10.1016/j.enpol.2015.06.011

    Article  Google Scholar 

Download references

Acknowledgements

This article was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. This work was conducted in the framework of PIKs flagship project on coevolutionary pathways (copan). The authors thank CoNDyNet (FKZ 03SF0472A) for their cooperation. The authors gratefully acknowledge the European Regional Development Fund (ERDF), the German Federal Ministry of Education and Research and the Land Brandenburg for supporting this project by providing resources on the high performance computer system at the Potsdam Institute for Climate Impact Research. J.K. was supported by the Russian Ministry of Science and Education Agreement No. 075-15-2020-808. The authors thank the developers of the used software: Python [83], Numerical Python [84] and Scientific Python [85]. The authors thank Sabine Auer, Wolfram Barfuss, Karsten Bölts, Catrin Ciemer, Eduardo Costa, Jonathan Donges, Reik Donner, Jaap Eldering, Jasper Franke, Roberto Gueleri, Frank Hellmann, Jakob Kolb, Julien Korinman, Till Koster, Chiranjit Mitra, Jan Nitzbon, Ilona Otto, Tiago Pereira, Camille Poignard, Francisco Rodrigues, Edmilson Roque dos Santos, Stefan Ruschel, Paul Schultz, Fabiano Berardo de Sousa, Lyubov Tupikina, and Kilian Zimmerer for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Müller-Hansen.

Appendices

Appendix

A Existence of eddies

Definition of eddy-like sets: We call a pair of sets eddy-like if and only if they fulfill the following two conditions: (i) and (ii) . Note the inverted order of the signs in the last term.

Union of two eddy-like pair sets are also eddy-like: For two eddy-like pairs of sets and , the union pair is eddy-like, too.

Proof: The first condition is trivially fulfilled and the second one follows straight away from for two state sets . Hence, the union of all eddy-like pairs of sets is maximal and eddies exist. \(\square \)

B Working definition of TSM bifurcations

For the analysis in Sect. 5.8, we use the following working definition of tsm bifurcations. Let \(\psi =(\psi _1,\ldots ,\psi _k)\) be a vector of parameters of the control system, let be the various tsm regions in dependence on parameter values, and let be the function that maps parameter values to the tuple of these regions. Now, we say that at a certain point \(\psi ^*\) in parameter space a tsm bifurcation happens if and only if \(f(\psi )\) is discontinuous at \(\psi ^*\) with respect to the Hausdorff metric between subsets of . In particular, we have a tsm bifurcation if the volume of some of the regions changes discontinuously at \(\psi ^*\).

C Parameter estimation

To get a roughly realistic setting, we estimated the parameters of the model using several publicly available data sources.

\(A_0\) was taken from [86] and slightly rounded. \(\tau _A\) and \(\beta \) were taken from [45]. \(\phi \) was based on the ton oil equivalent of various fossil fuels and a typical mass share of 90% carbon in fossil fuels, as described in [76].

Assuming that two degrees warming correspond to a carbon concentration of around 450 ppm [87] and thus to a carbon stock of 950 GtC (both being 1.6 times their pre-industrial value), we require that the total growth rate \(\beta - \theta A_1\) becomes zero for \(A_1 \approx 950\,\)GtC\({} - A_0 = 350\,\)GtC, hence \(\theta \) was taken to be \(\beta / A_1\) \(\approx \) \(8.57\cdot 10^{-5}/{}\)(GtC a).

\(\epsilon \) was estimated from the World Bank’s primary energy intensity data [88].

For \(\tau _S\), the characteristic depreciation time of renewable energy knowledge, no reliable source was found, so we made a very coarse guess by setting it roughly to the length of an average working life of 50 a.

The break-even knowledge level \(\sigma \) was also estimated very coarsely. According to past cumulative world consumption of renewable energy is \(\approx 2\cdot 10^{18}\,\)Btu \(\approx 2\cdot 10^{12}\,\)GJ or roughly 20 years of world energy consumption. To be on the conservative side and avoid overestimating the potential of renewables, we took \(\sigma \) to be two times that value.

\(\rho \) was set as follows. We assume fossil and renewable energy production costs of \(C_F\propto F^{1+\gamma }\) and \(C_R\propto R^{1+\gamma } / S^\lambda \), where \(\gamma > 0\) is a convexity parameter and \(\lambda > 0\) is a learning exponent. Then, energy prices are \(\pi _F\propto \partial C_F/\partial F\) \(\propto F^\gamma \) and \(\pi _R\propto \partial C_R/\partial R\) \(\propto R^\gamma / S^\lambda \). In the price equilibrium, \(\pi _F = \pi _R\), hence \(R / F \propto S^{\lambda / \gamma }\), and thus \(\rho = \lambda / \gamma \). According to [89], the learning rate \(LR = 1 - 2^{-\lambda }\) of several renewables is around 1/8, hence \(\lambda \approx \log _2 (8/7) \approx 0.2\). Assuming a mild convexity of \(\gamma \approx 0.1\), we get \(\rho \approx 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittel, T., Müller-Hansen, F., Koch, R. et al. From lakes and glades to viability algorithms: automatic classification of system states according to the topology of sustainable management. Eur. Phys. J. Spec. Top. 230, 3133–3152 (2021). https://doi.org/10.1140/epjs/s11734-021-00262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00262-2

Navigation