Skip to main content

Advertisement

Log in

Bacterial cellulose based facial mask with antioxidant property and high moisturizing capacity

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) produced by certain bacteria has the potential to be used in many different areas. Despite its advantageous properties compared to plant cellulose, such as high purity, mechanical strength, nanofiber mesh structure, and high-water holding capacity, its production through a biotechnological process prevents it from competing with plant counterparts in terms of cost-effectiveness. Therefore, studies have focused on the development of culture media with cost-effective BC production methods and the production of high value-added products from BC. In this study, it was aimed to develop a taurine-loaded moisturizing facial mask with antioxidant properties based on BC’s high-water retention and chemical retention capacity. BC facial mask samples were characterized by Scanning Electron Microscopy (SEM) imaging, Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Liquid Chromatography–Mass spectrometry (LC–MS), microbial and mechanical stability tests, as well as cytotoxicity tests. According to our results, produced facial mask samples did not show any cytotoxic effect on human keratinocyte (HS2) or mouse fibroblast (L-929) cell lines; it has high thermal stability, which makes it suitable for different sterilization techniques including sterilization by heat treatment. Taurine release (over 2 µg/mL in 5 min) and microbial stability tests (no bacterial growth observed) of packaged products kept at 40 and 25 °C for 6 months have shown that the product preserves its characteristics for a long time. In conclusion “bacterial cellulose-based facial masks" are suitable for use as a facial mask, and they can be used for moisturizing and antioxidant properties by means of taurine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelraof M, Hasanin MS, Farag MM, Ahmed HY (2019) Green synthesis of bacterial cellulose/bioactive glass nanocomposites: Effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int J Biol Macromol 138:975–985

    Article  CAS  PubMed  Google Scholar 

  • Adler S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85:367–485. https://doi.org/10.1007/s00204-011-0693-2

    Article  CAS  PubMed  Google Scholar 

  • Ahmed J, Gultekinoglu M, Edirisinghe M (2020) Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 41(1):07549

    Google Scholar 

  • Almeida I et al (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336

    Article  CAS  PubMed  Google Scholar 

  • Altun E et al (2019) Co-culture of keratinocyte-staphylococcus aureus on Cu-Ag-Zn/CuO and Cu-Ag-W nanoparticle loaded bacterial cellulose:PMMA bandages. Macromol Mater Eng 304:1800537. https://doi.org/10.1002/mame.201800537

    Article  CAS  Google Scholar 

  • Amnuaikit T, Chusuit T, Raknam P, Boonme P (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction Medical Devices (Auckland, NZ) 4:77

  • Azeredo H, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging aplications. Front Sustain Food Syst 3:7

    Article  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533. https://doi.org/10.1016/j.ijbiomac.2018.02.135

    Article  CAS  PubMed  Google Scholar 

  • Bianchet RT, Cubas ALV, Machado MM, Moecke EHS (2020) Applicability of bacterial cellulose in cosmetics-bibliometric review. Biotechnol Rep 27:e00502

    Article  Google Scholar 

  • Bilgi E, Bayir E, Sendemir-Urkmez A, Hames EE (2016) Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int J Biol Macromol 90:2–10

    Article  CAS  PubMed  Google Scholar 

  • Blechova R, Pivodova D (2001) Limulus amoebocyte lysate (LAL) test-An alternative method for detection of bacterial endotoxins. Acta Vet Brno 70:291

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. https://doi.org/10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  • Chen X-C, Pan Z-L, Liu D-S, Han X (1998) Effect of taurine on human fetal neuron cells: proliferation and differentiation. In: Taurine 3, Springer, pp 397–403

  • Cheng K-C, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736

    Article  CAS  PubMed  Google Scholar 

  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553

    Article  CAS  Google Scholar 

  • Dao H et al (2018) Microbial stability of pharmaceutical and cosmetic products. Aaps Pharmscitech 19:60–78

    Article  CAS  PubMed  Google Scholar 

  • Değim Z, Celebi N, Sayan H, Babül A, Erdoğan D, Take G (2002) An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22:187–198

    Article  PubMed  Google Scholar 

  • Fang B, Wan Y-Z, Tang T-T, Gao C, Dai K-R (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Farzamfar S et al (2018) Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: in vitro and in vivo evaluation. J Bioact Compat Polym 33:282–294

    Article  CAS  Google Scholar 

  • FDA (2012) Guidance for industry: pyrogen and endotoxins testing: questions and answers US department of health and human services food and drug administration: Bethesda. MD, USA

    Google Scholar 

  • FDA (1998) Bacteriological analytical manual. 8th (ed) Revision A. U.S. department of health and human services food and drug administration: Bethesda, MD, USA.

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress. Sports Med 36:327–358

    Article  PubMed  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  CAS  PubMed  Google Scholar 

  • Gola J (2019) Quality control of biomaterials—overview of the relevant technologies. In: stem cells and biomaterials for regenerative medicine. Elsevier, pp 143–161

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes The Biomaterials: Silver Jubilee Compendium, pp 219–241

  • Gorgieva S (2020) Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 8:624

    Article  CAS  Google Scholar 

  • Gorgieva S, Trček J (2019) Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9:1352

    Article  CAS  PubMed Central  Google Scholar 

  • Hakeem KR, Jawaid M, Rashid U (2016) Biomass and bioenergy. Springer

    Google Scholar 

  • Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malays 41:205–211

    CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352. https://doi.org/10.1042/bj0580345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SH, Limthongkul B, Humphreys TR (2013) The biomechanical properties of the skin. Dermatol Surg 39:193–203

    Article  CAS  PubMed  Google Scholar 

  • Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin Ç, Güneri P, Ertan G (2012) A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomed 7:5693

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1

  • Kim Y-S et al (2017) Antioxidant effect of taurine-rich paroctopus dofleini extracts through inhibiting ROS production against LPS-induced oxidative stress in vitro and in vivo model. In: Taurine 10, Springer, pp 1165–1177

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Koyama I, Nakamura T, Ogasawara M, Nemoto M, Yoshida T (1992) The protective effect of taurine on the biomembrane against damage produced by the oxygen radical. In: Taurine, Springer, pp 355–359

  • Lee D-S, Cheong SH (2017) Taurine have neuroprotective activity against oxidative damage-induced HT22 cell death through heme oxygenase-1 pathway. In: Taurine 10, Springer, pp 159–171

  • Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    Article  CAS  Google Scholar 

  • Liu G et al (2011) Three-dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. J Mater Chem 21:10637–10640

    Article  CAS  Google Scholar 

  • Lopez MM, Makhatadze GI (2002) Differential scanning calorimetry. In: Vogel HJ (ed) Calcium-binding protein protocols: Volume 2: Methods and techniques, Springer New York, Totowa, NJ, pp 113–119 https://doi.org/10.1385/1-59259-184-1:113

  • Lou J, Han D, Yu H, Yu G, Jin M, Kim S-J (2018) Cytoprotective effect of taurine against hydrogen peroxide-induced oxidative stress in UMR-106 cells through the Wnt/β-catenin signaling pathway. Biomol Ther 26:584

    Article  CAS  Google Scholar 

  • Malyala P, Singh M (2008) Endotoxin limits in formulations for preclinical research. J Pharm Sci 97:2041–2044

    Article  CAS  PubMed  Google Scholar 

  • McNamara JT, Morgan JL, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais ES et al (2019) Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydr Polym 206:187–197

    Article  CAS  PubMed  Google Scholar 

  • Moran-Mirabal JM, Cranston ED (2015) Cellulose nanotechnology on the rise. Ind Biotechnol 11:14–15

    Article  Google Scholar 

  • Nakamura T, Ogasawara M, Koyama I, Nemoto M, Yoshıda T (1993) The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull 16:970–972

    Article  CAS  PubMed  Google Scholar 

  • Pacheco G, de Mello CV, Chiari-Andréo BG, Isaac VLB, Ribeiro SJL, Pecoraro É, Trovatti E (2018) Bacterial cellulose skin masks—Properties and sensory tests. J Cosmet Dermatol 17:840–847

    Article  PubMed  Google Scholar 

  • Pang M et al (2020) Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 122:109365

    Article  CAS  Google Scholar 

  • Pauwels M, Rogiers V (2010) Human health safety evaluation of cosmetics in the EU: a legally imposed challenge to science. Toxicol Appl Pharmacol 243:260–274. https://doi.org/10.1016/j.taap.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  • Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes R 7:1052–1056

    Google Scholar 

  • Pértile RAN et al (2012) Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed 23:1339–1354. https://doi.org/10.1163/092050611X581516

    Article  CAS  PubMed  Google Scholar 

  • Perugini P, Bleve M, Cortinovis F, Colpani A (2018) Biocellulose masks as delivery systems: a novel methodological approach to assure quality and safety. Cosmetics 5:66

    Article  CAS  Google Scholar 

  • Piadozo MES (2016) Nata de coco industry in the Philippines. In: Bacterial nanocellulose, Elsevier, pp 215–229

  • Picheth GF et al (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    Article  CAS  PubMed  Google Scholar 

  • Quinlan GJ, Lamb NJ, Tilley R, Evans TW, Gutteridge J (1997) Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am J Respir Crit Care Med 155:479–484

    Article  CAS  PubMed  Google Scholar 

  • Reiniati I, Hrymak AN, Margaritis A (2017) Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit Rev Biotechnol 37:510–524

    Article  CAS  PubMed  Google Scholar 

  • Ripoll C, Coussaert A, Waldenberger FR, Vischer C, Ginouvès A, McGahie D, Gatto H (2012) Evaluation of natural substances’ protective effects against oxidative stress in a newly developed canine endothelial cell-based assay and in cell-free radical scavenging assays. Int J Appl Res Vet Med 10

  • Rona C, Vailati F, Berardesca E (2004) The cosmetic treatment of wrinkles. J Cosmet Dermatol 3:26–34

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Bhardwaj NK, Pathak P (2021) Ternary nano-biocomposite films using synergistic combination of bacterial cellulose with chitosan and gelatin for tissue engineering applications. J Biomater Sci Polym Ed 32:166–188

    Article  CAS  PubMed  Google Scholar 

  • Siefken W et al (2003) Role of Taurine Accumulation in Keratinocyte Hydration. J Investig Dermatol 121:354–361

    Article  PubMed  Google Scholar 

  • Spada F, Barnes TM, Greive KA (2018) Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems. Clin Cosmet Investig Dermatol 11:491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spink CH (2008) Differential scanning calorimetry. In: methods in cell biology, Academic Press, vol 84, pp 115–141 https://doi.org/10.1016/S0091-679X(07)84005-2

  • Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  • Teixeira SRZ et al (2019) Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Mater Res 22

  • Timbrell JA, Seabra V, Waterfield CJ (1995) The in vivo and in vitro protective properties of taurine general pharmacology: the vascular. System 26:453–462

    CAS  Google Scholar 

  • Trouba KJ, Hamadeh HK, Amin RP, Germolec DR (2002) Oxidative stress and its role in skin disease. Antioxid Redox Signal 4:665–673

    Article  CAS  PubMed  Google Scholar 

  • Tur E (1997) Physiology of the skin—Differences between women and men. Clin Dermatol 15:5–16. https://doi.org/10.1016/S0738-081X(96)00105-8

    Article  CAS  PubMed  Google Scholar 

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 25:1398–1405

    Google Scholar 

  • Wan Y, Hong L, Jia S, Huang Y, Zhu Y, Wang Y, Jiang H (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Wang F, Guo X-Y, Zhang D-N, Wu Y, Wu T, Chen Z-G (2015) Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason Sonochem 24:36–42

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Ma Q, Zhang Y-M, Han G-T, Qu C-X, Wang S-D (2020) Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage. Cellulose 27:1845–1852

    Article  CAS  Google Scholar 

  • Wassenaar TM, Zimmermann K (2018) Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol 8:63–69

    Article  CAS  Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd Polym 84:533–538

    Article  CAS  Google Scholar 

  • White A, Fishman JB (1936) The formation of taurine by the decarboxylation of cysteic acid. J Biol Chem 116(2):457–461. https://doi.org/10.1016/S0021-9258(18)74619-X

    Article  CAS  Google Scholar 

  • Wright C, Lin T, Lin Y, Sturman J, Gaull G (1985) Taurine scavenges oxidized chlorine in biological systems. Prog Clin Biol Res 179:137–147

    CAS  PubMed  Google Scholar 

  • y Pérez EC, Colla G, Porto LM (2014) Bacterial cellulose membranes and spheres composite with poly (l-lactic acid) through in situ polymerization. In: BMC Proceedings, BioMed Central, vol 4, pp 1–2

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  CAS  Google Scholar 

  • Ye J et al (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol 274:518–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2020) Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose 27:2775–2784

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Republic of Turkey, Ministry of Industry and Technology (SANTEZ Project Number: 0198-STZ-2013-1) and Scientific Research Foundation of Ege University (Project no. 2014/BIL/015).

Funding

Republic of Turkey, Ministry of Industry and Technology and BioRed Laboratory Products Company (0198-STZ-2013-1); Ege University Science and Technology Center (2014/BIL/015).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, collecting the data, performing the analysis, and writing Eyup B.; data analysis and interpretation, E.H.G.; conceptualization performing the analysis and writing Ece B.; conceptualization, data analysis and interpretation, and editing A.S.; data analysis and interpretation K.Ö.Ö.; conceptualization, data analysis and interpretation, and editing E.E.H.T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Elif Esin Hames Tuna.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgi, E., Homan Gokce, E., Bayir, E. et al. Bacterial cellulose based facial mask with antioxidant property and high moisturizing capacity. Cellulose 28, 10399–10414 (2021). https://doi.org/10.1007/s10570-021-04106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04106-z

Keywords

Navigation