Synthesis 2022; 54(01): 92-110
DOI: 10.1055/a-1577-7638
short review

Transition-Metal-Catalyzed Nucleophilic Dearomatization of Electron-Deficient Heteroarenes

Jie Jia
a   West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. of China
,
Fangdong Hu
b   School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. of China
,
Ying Xia
a   West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. of China
› Author Affiliations
This work is supported by the “Thousand Youth Talents Plan” (Grant No. 15-YINGXIA), the National Natural Science Foundation of China (Grant No. 22001180), and with start-up funding from Sichuan University (Grant No. YJ201965). F.H. acknowledges the National Natural Science Foundation of China (Grant No. 21801109), the Natural Science Foundation of Shandong Province (Grant No. ZR2018BB019), and the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA099) for financial support.


Abstract

In recent decades, transition-metal-catalyzed nucleophilic dearomatization of electron-deficient heteroarenes, such as pyridines, quinolines, isoquinolines and nitroindoles, has become a powerful method for accessing unsaturated heterocycles. This short review summarizes nucleophilic dearomatizations of electron-deficient hetero­arenes with carbon- and heteroatom-based nucleophiles via transition-metal catalysis. A significant number of functionalized heterocycles are obtained via this transformation. Importantly, many of these reactions are carried out in an enantioselective manner by means of asymmetric catalysis, providing a unique method for the construction of enantio­enriched heterocycles.

1 Introduction

2 Transition-Metal-Catalyzed Nucleophilic Dearomatization of Hetero­arenes via Alkynylation

3 Transition-Metal-Catalyzed Nucleophilic Dearomatization of Heteroarenes­ via Arylation

4 Transition-Metal-Catalyzed Nucleophilic Dearomatization of Heteroarenes­ with Other Nucleophiles

5 Transition-Metal-Catalyzed Nucleophilic Dearomatization with Nucleophiles Formed In Situ

6 Conclusion and Outlook



Publication History

Received: 23 June 2021

Accepted after revision: 03 August 2021

Accepted Manuscript online:
03 August 2021

Article published online:
09 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
    • 1c Huang J, Yu G. Chem. Mater. 2021; 33: 1513
    • 1d Muthukrishnan I, Sridharan V, Menéndez JC. Chem. Rev. 2019; 119: 5057
    • 1e Yang K, Yao C, Gao J, Chen S, Zheng X, Deng L, Zhang Y, Liu M, Wang Z. Chin. J. Org. Chem. 2020; 40: 4168

      For reviews, see:
    • 2a Ahamed M, Todd MH. Eur. J. Org. Chem. 2010; 5935
    • 2b Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
    • 2c Liu J, Dasgupta S, Watson MP. Beilstein J. Org. Chem. 2015; 11: 2696
    • 2d Eisner U, Kuthan J. Chem. Rev. 1972; 72: 1
    • 2e Stout DM, Meyers AI. Chem. Rev. 1982; 82: 223
    • 2f Tsukano C, Takemoto Y. Dearomatization Reactions of Electron-Deficient Aromatic Rings. In Asymmetric Dearomatization Reactions. You S.-L. Wiley-VCH; Weinheim: 2016: 247-278
    • 2g Cerveri A, Bandini M. Chin. J. Chem. 2020; 38: 287

    • For reviews on nucleophilic dearomatization of activated pyridines, see:
    • 2h Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
    • 2i Bertuzzi G, Bernardi L, Fochi M. Catalysts 2018; 8: 632
  • 4 Black DA, Arndtsen BA. Org. Lett. 2004; 6: 1107
  • 5 Zhang P, Cook AM, Liu Y, Wolf C. J. Org. Chem. 2014; 79: 4167
  • 6 Taylor AM, Schreiber SL. Org. Lett. 2006; 8: 143
  • 7 Sun Z, Yu S, Ding Z, Ma D. J. Am. Chem. Soc. 2007; 129: 9300
  • 8 Black DA, Beveridge RE, Arndtsen BA. J. Org. Chem. 2008; 73: 1906
  • 9 Pappoppula M, Cardoso FS, Garrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
  • 10 Houghton PJ, Woldemariam TZ, Watanabe Y, Yates M. Planta Med. 1999; 65: 250
  • 11 Rakotoson JH, Fabre N, Jacquemond-Collet I, Hannedouche S, Fourasté I, Moulis C. Planta Med. 1998; 64: 762
  • 12 Garg Y, Gahalawat S, Pandey SK. RSC Adv. 2015; 5: 38846
  • 13 Kou X, Zhao Q, Guan Z.-H. Org. Chem. Front. 2020; 7: 829
  • 14 De N, Ko D, Baek S.-Y, Oh C, Kim J, Baik M.-H, Yoo EJ. ACS Catal. 2020; 10: 10905
  • 15 Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
  • 16 Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
  • 17 Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093
  • 18 Tian P, Dong H.-Q, Lin G.-Q. ACS Catal. 2012; 2: 95
  • 19 Nadeau C, Aly S, Belyk K. J. Am. Chem. Soc. 2011; 133: 2878
  • 20 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 21 Pai C.-C, Lin C.-W, Lin C.-C, Chen C.-C, Chan AS. C, Wong WT. J. Am. Chem. Soc. 2000; 122: 11513
  • 22 Robinson DJ, Spurlin SP, Gorden JD, Karimov RR. ACS Catal. 2020; 10: 51
  • 23 Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F. Angew. Chem. Int. Ed. 2016; 55: 3776
  • 24 Wallace OB, Lauwers KS, Jones SA, Dodge JA. Bioorg. Med. Chem. Lett. 2003; 13: 1907
  • 25 Graham TJ. A, Shields JD, Doyle AG. Chem. Sci. 2011; 2: 980
  • 26 Graham TJ. A, Doyle AG. Org. Lett. 2012; 14: 1616
  • 27 Sylvester KT, Wu K, Doyle AG. J. Am. Chem. Soc. 2012; 134: 16967
  • 28 Chau ST, Lutz JP, Wu K, Doyle AG. Angew. Chem. Int. Ed. 2013; 52: 9153
  • 29 Lutz JP, Chau ST, Doyle AG. Chem. Sci. 2016; 7: 4105
    • 30a Comins DL, Goehring RR, Joseph SP, O’Connor S. J. Org. Chem. 1990; 55: 2574
    • 30b Comins DL, Hong H. J. Am. Chem. Soc. 1991; 113: 6672
    • 30c Comins DL, Hong H. J. Am. Chem. Soc. 1993; 115: 8851
    • 30d Comins DL, Zhang Y.-m. J. Am. Chem. Soc. 1996; 118: 12248
    • 30e Comins DL, Kuethe JT, Hong H, Lakner FJ, Concolino TE, Rheingold AL. J. Am. Chem. Soc. 1999; 121: 2651
    • 30f Comins DL, Brooks CA, Al-awar RS, Goehring RR. Org. Lett. 1999; 1: 229
    • 30g Comins DL, Zhang Y.-m, Joseph SP. Org. Lett. 1999; 1: 657
    • 30h Comins DL, Huang S, McArdle CL, Ingalls CL. Org. Lett. 2001; 3: 469
    • 30i Comins DL, Zheng X, Goehring RR. Org. Lett. 2002; 4: 1611
    • 30j Kuethe JT, Comins DL. J. Org. Chem. 2004; 69: 5219
  • 31 Mangeney P, Gosmini R, Raussou S, Commercon M, Alexakis A. J. Org. Chem. 1994; 59: 1877
  • 32 Hilgeroth A, Baumeister U. Angew. Chem. Int. Ed. 2000; 39: 576
  • 33 Fernández-Ibáñez M. Á, Maciá B, Pizzuti MG, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2009; 48: 9339
  • 34 Yan X, Ge L, Castiñeira Reis M, Harutyunyan SR. J. Am. Chem. Soc. 2020; 142: 20247
  • 35 Guo Y, Castiñeira Reis M, Kootstra J, Harutyunyan SR. ACS Catal. 2021; 11: 8476
  • 36 Comins DL, Abdullah AH. J. Org. Chem. 1984; 49: 3392
  • 37 Harrod JF, Shu R, Woo H.-G, Samuel E. Can. J. Chem. 2001; 79: 1075
  • 38 Gutsulyak DV, van der Est A, Nikonov GI. Angew. Chem. Int. Ed. 2011; 50: 1384
  • 39 Königs CD. F, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 10076
  • 40 Lee S.-H, Gutsulyak DV, Nikonov GI. Organometallics 2013; 32: 4457
  • 41 Behera D, Thiyagarajan S, Anjalikrishna PK, Suresh CH, Gunanathan C. ACS Catal. 2021; 11: 5885
  • 42 Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
  • 43 Kaithal A, Chatterjee B, Gunanathan C. Org. Lett. 2016; 18: 3402
  • 44 Yu H.-C, Islam SM, Mankad NP. ACS Catal. 2020; 10: 3670
  • 45 Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 7324
  • 46 Xu X, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2013; 135: 12439
  • 47 Kang Z, Zhang D, Hu W. Org. Lett. 2017; 19: 3783
  • 48 Zhang D, Kang Z, Hu W. J. Org. Chem. 2017; 82: 5952
  • 49 Baek S.-y, Lee JY, Ko D, Baik M.-H, Yoo EJ. ACS Catal. 2018; 8: 6353
  • 50 Ko D, Baek S.-y, Shim JY, Lee JY, Baik M.-H, Yoo EJ. Org. Lett. 2019; 21: 3998
  • 51 Trost BM, Ehmke V, O’Keefe BM, Bringley DA. J. Am. Chem. Soc. 2014; 136: 8213
  • 52 Awata A, Arai T. Angew. Chem. Int. Ed. 2014; 53: 10462
  • 53 Gerten AL, Stanley LM. Org. Chem. Front. 2016; 3: 339
  • 54 Cheng Q, Zhang F, Cai Y, Guo Y.-L, You S.-L. Angew. Chem. Int. Ed. 2018; 57: 2134
  • 55 Suo J.-J, Liu W, Du J, Ding C.-H, Hou X.-L. Chem. Asian J. 2018; 13: 959
  • 56 Sun M, Zhu Z.-Q, Gu L, Wan X, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 2341
  • 57 Zhang J.-Q, Tong F, Sun B.-B, Fan W.-T, Chen J.-B, Hu D, Wang X.-W. J. Org. Chem. 2018; 83: 2882
  • 58 Wan Q, Xie J.-H, Zheng C, Yuan Y.-F, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 19730
  • 59 Xie J.-H, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2021; in press, DOI: DOI: 10.1002/anie.202107139.
  • 60 Cheng Q, Zhang H.-J, Yue W.-J, You S.-L. Chem 2017; 3: 428
  • 61 Wang Z, Wang D.-C, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2020; 22: 164
  • 62 Gribble MW, Guo S, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 5057
  • 63 Wu L, Sheong FK, Lin Z. ACS Catal. 2020; 10: 9585