Skip to main content
Log in

Metastability of Blume–Capel Model with Zero Chemical Potential and Zero External Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this study, we investigate the metastable behavior of Metropolis-type Glauber dynamics associated with the Blume–Capel model with zero chemical potential and zero external field at very low temperatures. The corresponding analyses for the same model with zero chemical potential and positive small external field were performed in Cirillo and Nardi (J Stat Phys 150:1080–1114, 2013) and Landim and Lemire (J Stat Phys 164:346–376, 2016). We obtain both large deviation-type and potential-theoretic results on the metastable behavior in our setting. To this end, we perform highly thorough investigation on the energy landscape, where it is revealed that no critical configurations exist and alternatively a massive flat plateau of saddle configurations resides therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. If we take elements from a set by writing \(a,\,b\in A\), we implicitly imply that a and b are different.

  2. For two collections \((a_{\beta })_{\beta>0}=(a_{\beta }(K,\,L))_{\beta >0}\) and \((b_{\beta })_{\beta>0}=(b_{\beta }(K,\,L))_{\beta >0}\) of real numbers, we denote \(a_{\beta }=O(b_{\beta })\) if there exists \(C=C(K,\,L)>0\) such that \(|a_{\beta }|\le Cb_{\beta }\) for all \(\beta >0\) and \(K,\,L\). We denote \(a_{\beta }=o(b_{\beta })\) if \(\lim _{\beta \rightarrow \infty }a_{\beta }/b_{\beta }=0\) for all \(K,\,L\). Moreover, we state that \(a_{\beta }\) and \(b_{\beta }\) are asymptotically equal and denote by \(a_{\beta }\simeq b_{\beta }\) if \(\lim _{\beta \rightarrow \infty }a_{\beta }/b_{\beta }=1\) for all \(K,\,L\).

  3. For integers m and n, \(\llbracket m,\,n\rrbracket \) denotes \([m,\,n]\cap {\mathbb {Z}}\) (i.e., integers from m to n).

References

  1. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)

    Article  MathSciNet  Google Scholar 

  2. Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Math. Phys. 35, 603–634 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MathSciNet  Google Scholar 

  4. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II, the nonreversible case. J. Stat. Phys. 149, 598–618 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beltrán, J., Landim, C.: A martingale approach to metastability. Probab. Theory Relat. Fields 161, 267–307 (2015)

    Article  MathSciNet  Google Scholar 

  6. Landim, C., Marcondes, D., Seo, I.: A resolvent approach to metastability. arXiv:2102.00998 (2021)

  7. Landim, C., Mariani, M., Seo, I.: Dirichlets and Thomsons principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes. Arch. Rational Mech. Anal. 231, 887–938 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Rezakhanlou, F.; Seo, I.: Scaling limit of small random perturbation of dynamical systems. arXiv:1812.02069 (2018)

  9. Kim, S.: Second time scale of the metastability of reversible inclusion processes. Probab. Theory Relat. Fields (2021). https://doi.org/10.1007/s00440-021-01036-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, S., Seo, I.: Condensation and metastable behavior of non-reversible inclusion processes. Commun. Math. Phys. 382, 1343–1401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Seo, I.: Condensation of non-reversible zero-range processes. Commun. Math. Phys. 366, 781–839 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ben Arous, G., Cerf, R.: Metastability of the three dimensional Ising model on a torus at very low temperatures. Electron. J. Probab. 1, 1–55 (1996)

    Article  MathSciNet  Google Scholar 

  13. Cirillo, E.N.M., Olivieri, E.: Metastability and nucleation for the Blume–Capel model. Different mechanisms of transition. J. Stat. Phys. 83, 473–554 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Landim, C., Lemire, P.: Metastability of the two-dimensional Blume–Capel model with zero chemical potential and small magnetic field. J. Stat. Phys. 164, 346–376 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Landim, C., Lemire, P., Mourragui, M.: Metastability of the two-dimensional Blume–Capel model with zero chemical potential and small magnetic field on a large torus. J. Stat. Phys. 175, 456–494 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Nardi, F.R., Zocca, A.: Tunneling behavior of Ising and Potts models in the low-temperature regime. Stoch. Process. Appl. 129, 4556–4575 (2019)

    Article  MathSciNet  Google Scholar 

  17. Neves, E.J., Schonmann, R.H.: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Commun. Math. Phys. 137, 209–230 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bovier, A., den Hollander, F.: Metastabillity: A Potential-Theoretic Approach. Grundlehren der mathematischen Wissenschaften, Springer, New York (2015)

    Book  Google Scholar 

  19. Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Encyclopedia of Mathematics and Its Applications, vol. 100. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  20. Manzo, F., Olivieri, E.: Dynamical Blume–Capel model: competing metastable states at infinite volume. J. Stat. Phys. 104, 1029–1090 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cirillo, E.N.M., Nardi, F.R.: Relaxation height in energy landscapes: an application to multiple metastable states. J. Stat. Phys. 150, 1080–1114 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Sum of exit times in a series of two metastable states. Eur. Phys. J. Spec. Top. 226, 2421–2438 (2017)

    Article  Google Scholar 

  23. Nardi, F.R., Zocca, A., Borst, S.C.: Hitting time asymptotics for hard-core interactions on grids. J. Stat. Phys. 162, 522–576 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kim, S., Seo, I.: Metastability of stochastic Ising and Potts models on lattices without external fields. arXiv:2102.05565 (2021)

  25. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  26. Gaudillière, A., Landim, C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields 158, 55–89 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Seonwoo Kim was supported by NRF-2019-Fostering Core Leaders of the Future Basic Science Program/Global Ph.D. Fellowship Program and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1C1B6006896).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonwoo Kim.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Auxiliary Process

Appendix: Auxiliary Process

1.1 Original Auxiliary Process

Fig. 7
figure 7

(Left) graph structure \(({\widehat{V}}_{K},\,E({\widehat{V}}_{K}))\). (Right) graph structure \((V_{K},\,E(V_{K}))\)

In this subsection, we define an auxiliary process which successfully represents the Metropolis dynamics on the edge typical configurations. For \(K\ge 5\), we define a graph structure \(({\widehat{V}}_{K},\,E({\widehat{V}}_{K}))\) (see Fig. 7 (left) for an illustration for the case of \(K=5\)). First, the vertex set \({\widehat{V}}_{K}\subseteq {\mathbb {R}}^{2}\) is defined by

$$\begin{aligned} {\widehat{V}}_{K}=\{(a,\,b)\in {\mathbb {R}}^{2}:0\le b\le a\le K\text { and }b\le 2\}\setminus \{(K,\,2)\}. \end{aligned}$$
(A.1)

Then, the edge structure \(E({\widehat{V}}_{K})\) is inherited by the Euclidean lattice. We abbreviate by \(0=(0,\,0)\in {\widehat{V}}_{K}\) and define

$$\begin{aligned} {\widehat{A}}_{K}=\{(a,\,b)\in {\widehat{V}}_{K}:a=K\text { or }b=2\}. \end{aligned}$$

Then, we define \(\{{\widehat{Z}}_{K}(t)\}_{t\ge 0}\) as the continuous-time random walk on the aforementioned graph whose transition rate is uniformly 1. In other words, the transition rate \({\widehat{r}}_{K}:{\widehat{V}}_{K}\times {\widehat{V}}_{K}\rightarrow [0,\,\infty )\) is given by

$$\begin{aligned} {\widehat{r}}_{K}(x,\,y)={\left\{ \begin{array}{ll} 1 &{} \text {if }\{x,\,y\}\in E({\widehat{V}}_{K}),\\ 0 &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

Obviously, the process is reversible with respect to the uniform distribution on \({\widehat{V}}_{K}\).

We denote by \({\widehat{h}}_{\cdot ,\cdot }^{K}(\cdot )\) and \(\widehat{\text {cap}}_{K}(\cdot ,\,\cdot )\) the equilibrium potential and capacity with respect to \({\widehat{Z}}_{K}(\cdot )\), respectively, in the sense of Definition 3.1. We define a constant \({{\mathfrak {c}}}_{K}>0\) by

$$\begin{aligned} {{\mathfrak {c}}}_{K}=|{\widehat{V}}_{K}|\widehat{\text {cap}}_{K}(0,\,{\widehat{A}}_{K}). \end{aligned}$$
(A.2)

Then, we have the following asymptotic lemma.

Lemma A.1

There exists a positive constant \(\delta \) with \(|\delta -0.435|<0.0001\) such that

$$\begin{aligned} \lim _{K\rightarrow \infty }{{\mathfrak {c}}}_{K}=\delta . \end{aligned}$$

Proof

We explicitly compute the equilibrium potential \({\widehat{h}}_{0,{\widehat{A}}_{K}}^{K}(\cdot )\). For simplicity, we write \(h={\widehat{h}}_{0,{\widehat{A}}_{K}}^{K}\) and abbreviate by \(h(a,\,b)=h((a,\,b))\) for \((a,\,b)\in {\widehat{V}}_{K}\). We define

$$\begin{aligned} a_{i}=h(K-i,\,0)\;\;\;\;;\;i\in \llbracket 0,\,K\rrbracket \;\;\;\;\text {and}\;\;\;\;b_{i}=h(K-i,\,1)\;\;\;\;;\;i\in \llbracket 0,\,K-1\rrbracket . \end{aligned}$$

Then, we trivially have \(a_{K}=h(0,\,0)=1\),

$$\begin{aligned} a_{0}=h(K,\,0)=0\;\;\;\;\text {and}\;\;\;\;b_{0}=h(K,\,1)=0. \end{aligned}$$
(A.3)

Moreover, by the Markov property, the following recurrence relations hold:

$$\begin{aligned}&3a_{i} =a_{i+1}+a_{i-1}+b_{i}\;\;\;\;;\;i\in \llbracket 1,\,K-1\rrbracket , \end{aligned}$$
(A.4)
$$\begin{aligned}&4b_{i} =b_{i+1}+b_{i-1}+a_{i}\;\;\;\;;\;i\in \llbracket 1,\,K-2\rrbracket , \end{aligned}$$
(A.5)
$$\begin{aligned}&2b_{K-1}=b_{K-2}+a_{K-1}\;\;\;\;\text {and}\;\;\;\;3a_{K-1}=1+a_{K-2}+b_{K-1}. \end{aligned}$$
(A.6)

Then, (A.4) and (A.5) induce the following relations:

$$\begin{aligned} a_{i+2}-7a_{i+1}+13a_{i}-7a_{i-1}+a_{i-2}&=0\;\;\;;\;i\in \llbracket 2,\,K-3\rrbracket , \end{aligned}$$
(A.7)
$$\begin{aligned} b_{i+2}-7b_{i+1}+13b_{i}-7b_{i-1}+b_{i-2}&=0\;\;\;;\;i\in \llbracket 2,\,K-3\rrbracket . \end{aligned}$$
(A.8)

Hence, we solve \(t^{4}-7t^{3}+13t^{2}-7t+1=0\), which is equivalent to \((t+t^{-1})^{2}-7(t+t^{-1})+11=0\). This gives \(t+t^{-1}=(7\pm \sqrt{5})/2\). Thus, we define the positive constants \(\alpha _{1},\,\alpha _{2},\,\alpha _{3},\,\alpha _{4}>0\) such that \(\alpha _{1}>\alpha _{2}\) are the solutions of \(t+t^{-1}=(7+\sqrt{5})/2\) and \(\alpha _{3}>\alpha _{4}\) are the solutions of \(t+t^{-1}=(7-\sqrt{5})/2\). Then, there exist constants \(p_{n}\) and \(q_{n}\), \(n\in \llbracket 1,\,4\rrbracket \) such that we have, for \(i\in \llbracket 0,\,K-1\rrbracket \),

$$\begin{aligned} a_{i}=\sum _{n=1}^{4}p_{n}\alpha _{n}^{i}\;\;\;\;\text {and}\;\;\;\;b_{i}=\sum _{n=1}^{4}q_{n}\alpha _{n}^{i}. \end{aligned}$$
(A.9)

Based on the last formula, (A.3) implies

$$\begin{aligned} p_{1}+p_{2}+p_{3}+p_{4}=q_{1}+q_{2}+q_{3}+q_{4}=0, \end{aligned}$$
(A.10)

and (A.4) implies, for \(i\in \llbracket 1,\,K-1\rrbracket \),

$$\begin{aligned} \sum _{n=1}^{4}\alpha _{n}^{i-1}\{p_{n}\alpha _{n}^{2}-(3p_{n}-q_{n})\alpha _{n}+p_{n}\}=0. \end{aligned}$$

As \(K\ge 5\), this implies that

$$\begin{aligned} \begin{bmatrix}1 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ \alpha _{1} &{}\quad \alpha _{2} &{}\quad \alpha _{3} &{}\quad \alpha _{4}\\ \alpha _{1}^{2} &{}\quad \alpha _{2}^{2} &{}\quad \alpha _{3}^{2} &{}\quad \alpha _{4}^{2}\\ \alpha _{1}^{3} &{}\quad \alpha _{2}^{3} &{}\quad \alpha _{3}^{3} &{}\quad \alpha _{4}^{3} \end{bmatrix}\begin{bmatrix}p_{1}\alpha _{1}^{2}-(3p_{1}-q_{1})\alpha _{1}+p_{1}\\ p_{2}\alpha _{2}^{2}-(3p_{2}-q_{2})\alpha _{2}+p_{2}\\ p_{3}\alpha _{3}^{2}-(3p_{3}-q_{3})\alpha _{3}+p_{3}\\ p_{4}\alpha _{4}^{2}-(3p_{4}-q_{4})\alpha _{4}+p_{4} \end{bmatrix}=0. \end{aligned}$$

As the square matrix is invertible (cf. Vandermonde matrix), we must have \(p_{n}\alpha _{n}^{2}-(3p_{n}-q_{n})\alpha _{n}+p_{n}=0\) for all \(n\in \llbracket 1,\,4\rrbracket \), which implies that

$$\begin{aligned} 3p_{n}-q_{n}=\frac{7+\sqrt{5}}{2}p_{n}\;\;\;\;;\;n=1,\,2,\;\;\;\;\text {and}\;\;\;\;3p_{n}-q_{n}=\frac{7-\sqrt{5}}{2}p_{n}\;\;\;\;;\;n=3,\,4. \end{aligned}$$

Hence, substituting (A.10) and the last display to (A.9) gives, for \(i\in \llbracket 0,\,K-1\rrbracket \),

$$\begin{aligned} a_{i}= & {} p_{1}(\alpha _{1}^{i}-\alpha _{2}^{i})+p_{3}(\alpha _{3}^{i}-\alpha _{4}^{i}),\nonumber \\ b_{i}= & {} -\frac{1+\sqrt{5}}{2}p_{1}(\alpha _{1}^{i}-\alpha _{2}^{i})+\frac{-1+\sqrt{5}}{2}p_{3}(\alpha _{3}^{i}-\alpha _{4}^{i}). \end{aligned}$$
(A.11)

Substituting the last formula to (A.6) implies

$$\begin{aligned}&(2+\sqrt{5})p_{1}(\alpha _{1}^{K-1}-\alpha _{2}^{K-1})+(2-\sqrt{5})p_{3}(\alpha _{3}^{K-1}-\alpha _{4}^{K-1})\\&=\frac{1+\sqrt{5}}{2}p_{1}(\alpha _{1}^{K-2}-\alpha _{2}^{K-2})+\frac{1-\sqrt{5}}{2}p_{3}(\alpha _{3}^{K-2}-\alpha _{4}^{K-2}) \end{aligned}$$

and

$$\begin{aligned}&\frac{7+\sqrt{5}}{2}p_{1}(\alpha _{1}^{K-1}-\alpha _{2}^{K-1})+\frac{7-\sqrt{5}}{2}p_{3}(\alpha _{3}^{K-1}-\alpha _{4}^{K-1})\\&=1+p_{1}(\alpha _{1}^{K-2}-\alpha _{2}^{K-2})+p_{3}(\alpha _{3}^{K-2}-\alpha _{4}^{K-2}). \end{aligned}$$

Solving the last two equations, we can express \(p_{1}\) and \(p_{3}\) in terms of \(\alpha _{1},\,\alpha _{2},\,\alpha _{3},\,\alpha _{4}\). Substituting these to the first equation of (A.11) for \(i=K-1\), we deduce that \(a_{K-1}\) equals

$$\begin{aligned} -\Big [(2-\sqrt{5})-\frac{1-\sqrt{5}}{2}\frac{\alpha _{3}^{K-2}-\alpha _{4}^{K-2}}{\alpha _{3}^{K-1}-\alpha _{4}^{K-1}}\Big ]+\Big [(2+\sqrt{5})-\frac{1+\sqrt{5}}{2}\frac{\alpha _{1}^{K-2}-\alpha _{2}^{K-2}}{\alpha _{1}^{K-1}-\alpha _{2}^{K-1}}\Big ] \end{aligned}$$

divided by

$$\begin{aligned}&\Big [(2+\sqrt{5})-\frac{1+\sqrt{5}}{2}\frac{\alpha _{1}^{K-2}-\alpha _{2}^{K-2}}{\alpha _{1}^{K-1}-\alpha _{2}^{K-1}}\Big ]\Big [\frac{7-\sqrt{5}}{2}-\frac{\alpha _{3}^{K-2}-\alpha _{4}^{K-2}}{\alpha _{3}^{K-1}-\alpha _{4}^{K-1}}\Big ]\\&-\Big [(2-\sqrt{5})-\frac{1-\sqrt{5}}{2}\frac{\alpha _{3}^{K-2}-\alpha _{4}^{K-2}}{\alpha _{3}^{K-1}-\alpha _{4}^{K-1}}\Big ]\Big [\frac{7+\sqrt{5}}{2}-\frac{\alpha _{1}^{K-2}-\alpha _{2}^{K-2}}{\alpha _{1}^{K-1}-\alpha _{2}^{K-1}}\Big ]. \end{aligned}$$

As \(\alpha _{1}>\alpha _{2}\) and \(\alpha _{3}>\alpha _{4}\), we have \((\alpha _{2}/\alpha _{1})^{K-1}\rightarrow 0\) and \((\alpha _{4}/\alpha _{3})^{K-1}\rightarrow 0\) as \(K\rightarrow \infty \). Thus, we may calculate

$$\begin{aligned} \lim _{K\rightarrow \infty }a_{K-1}&=\frac{-\Big [(2-\sqrt{5})-\frac{1-\sqrt{5}}{2}\frac{1}{\alpha _{3}}\Big ]+\Big [(2+\sqrt{5})-\frac{1+\sqrt{5}}{2}\frac{1}{\alpha _{1}}\Big ]}{\Big [(2+\sqrt{5})-\frac{1+\sqrt{5}}{2}\frac{1}{\alpha _{1}}\Big ]\Big [\frac{7-\sqrt{5}}{2}-\frac{1}{\alpha _{3}}\Big ]-\Big [(2-\sqrt{5})-\frac{1-\sqrt{5}}{2}\frac{1}{\alpha _{3}}\Big ]\Big [\frac{7+\sqrt{5}}{2}-\frac{1}{\alpha _{1}}\Big ]}\\&=\frac{2\sqrt{5}-\frac{1+\sqrt{5}}{2}\alpha _{2}+\frac{1-\sqrt{5}}{2}\alpha _{4}}{5\sqrt{5}+\frac{3-5\sqrt{5}}{2}\alpha _{2}+\frac{-3-5\sqrt{5}}{2}\alpha _{4}+\sqrt{5}\alpha _{2}\alpha _{4}}. \end{aligned}$$

In the second equality, we used that \(\alpha _{1}\alpha _{2}=\alpha _{3}\alpha _{4}=1\). By substituting the exact values of \(\alpha _{i}\), this is asymptotically 0.5649853624. Moreover, as \(0=(0,\,0)\in {\widehat{V}}_{K}\) is connected only to \((1,\,0)\in {\widehat{V}}_{K}\), we have by [18, (7.1.39)] that

$$\begin{aligned} \widehat{\text {cap}}_{K}(0,\,{\widehat{A}}_{K})=\frac{1}{|{\widehat{V}}_{K}|}[h(0,\,0)-h(1,\,0)]=\frac{1-a_{K-1}}{|{\widehat{V}}_{K}|}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \lim _{K\rightarrow \infty }{{\mathfrak {c}}}_{K}=\lim _{K\rightarrow \infty }|{\widehat{V}}_{K}|\widehat{\text {cap}}_{K}(0,\,{\widehat{A}}_{K})=1-\lim _{K\rightarrow \infty }a_{K-1}\approx 0.4350146376, \end{aligned}$$

which concludes the proof. \(\square \)

Remark 1

In the periodic boundary case, we need a completely different auxiliary process to estimate the structure of edge typical configurations. Namely, the desired process is a Markov chain on the collection of subtrees of a \(K\times 2\)-shaped ladder graph with semi-periodic boundary conditions (i.e., open on the horizontal boundaries and periodic on the vertical ones). In this case, we deduce an upper bound for the corresponding capacity, which is sufficient to obtain the bound (9.3). We refer to [24, Proposition 7.9] for more information on this estimate.

1.2 Projected Auxiliary Process

Based on the original auxiliary process defined in the preceding subsection, we define a projected auxiliary process which is obtained by simply projecting the elements in \({\widehat{A}}_{K}\) to a single element \({{\mathfrak {d}}}\). Rigorously, we define a graph structure \((V_{K},\,E(V_{K}))\) (see Fig. 7 (right) for an illustration for the case of \(K=5\)). The vertex set \(V_{K}\subseteq {\mathbb {R}}^{2}\) is defined by

$$\begin{aligned} V_{K}=({\widehat{V}}_{K}\setminus {\widehat{A}}_{K})\cup \{{{\mathfrak {d}}}\}. \end{aligned}$$
(A.12)

Then, the edge structure \(E(V_{K})\) is inherited by \(E({\widehat{V}}_{K})\); we have \(\{x,\,y\}\in E(V_{K})\) for \(\{x,\,y\}\in E({\widehat{V}}_{K})\), \(x,\,y\in {\widehat{V}}_{K}\setminus {\widehat{A}}_{K}\), and we have \(\{x,\,{{\mathfrak {d}}}\}\in E(V_{K})\) for

$$\begin{aligned} x\in {\widehat{V}}_{K}\setminus {\widehat{A}}_{K}\;\;\;\;\text {satisfying}\;\;\;\;\exists y\in {\widehat{A}}_{K}\;\;\;\;\text {with}\;\;\;\;\{x,\,y\}\in E({\widehat{V}}_{K}). \end{aligned}$$

Then, we define \(\{Z_{K}(t)\}_{t\ge 0}\) as the continuous-time Markov chain on \((V_{K},\,E(V_{K}))\) whose transition rate \(r_{K}\) is defined by \(r_{K}(x,\,y)={\widehat{r}}_{K}(x,\,y)\) if \(x,\,y\ne {{\mathfrak {d}}}\) and

$$\begin{aligned} r_{K}(x,\,{{\mathfrak {d}}})=r_{K}({{\mathfrak {d}}},\,x)=\sum _{y\in {\widehat{A}}_{K}}{\widehat{r}}_{K}(x,\,y). \end{aligned}$$

This process is reversible with respect to the uniform distribution on \(V_{K}\).

We denote by \(h_{\cdot ,\cdot }^{K}(\cdot )\), \(\text {cap}_{K}(\cdot ,\,\cdot )\), \(D_{K}(\cdot )\) the equilibrium potential, capacity, and Dirichlet form with respect to \(Z_{K}(\cdot )\), respectively, in the sense of Definition 3.1. Then, by the strong Markov property, it is immediate from the definition that

$$\begin{aligned} h_{0,{{\mathfrak {d}}}}^{K}(x)={\widehat{h}}_{0,{\widehat{A}}_{K}}^{K}(x)\;\;\;\;;\;x\in {\widehat{V}}_{K}\setminus {\widehat{A}}_{K}\;\;\;\;\text {and}\;\;\;\;h_{0,{{\mathfrak {d}}}}^{K}({{\mathfrak {d}}})={\widehat{h}}_{0,{\widehat{A}}_{K}}^{K}(y)=0\;\;\;\;;\;y\in {\widehat{A}}_{K}. \end{aligned}$$

Therefore, by (3.4), we have (cf. (A.2))

$$\begin{aligned} |V_{K}|\text {cap}_{K}(0,\,{{\mathfrak {d}}})=|{\widehat{V}}_{K}|\widehat{\text {cap}}_{K}(0,\,{\widehat{A}}_{K})={{\mathfrak {c}}}_{K}. \end{aligned}$$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S. Metastability of Blume–Capel Model with Zero Chemical Potential and Zero External Field. J Stat Phys 184, 33 (2021). https://doi.org/10.1007/s10955-021-02823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02823-0

Keywords

Mathematics Subject Classification

Navigation