Skip to main content

Advertisement

Log in

Effect of Forster resonance energy transfer on the photoluminescence of PPy-ZnO composite

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The structural and optical properties of polypyrrole-ZnO (PPy-ZnO) composites with different amount of ZnO are investigated. The nature of optical absorption and emission of the composites having agglomerated granular morphology is explored. Addition of ZnO slightly affects the conjugation of the polymer chain due to which the π-π* transition of PPy-ZnO composite shows some blue shift in the UV-Vis absorption spectra. The photoluminescence intensity of PPy-ZnO nanocomposite varies with variation of ZnO content. This tunability in the photoluminescence intensity of PPy-ZnO nanocomposite can be understood in terms of Forster Resonance Energy transfer (FRET) from ZnO (donor) to PPy (acceptor). The energy transfer efficiency, Forster radius and separation between donor and acceptor are predicted theoretically by using a FRET model. With the change in donor concentration, the energy transfer efficiency changes which affects the emission intensity of composites. The highest emission intensity is observed for 1.22 g of ZnO which indicates the highest energy transfer between ZnO and PPy. Thus, by tuning ZnO content the emission properties of the PPy-ZnO composite can be tuned.

Highlights

  • Semiconducting PPy-ZnO composites are synthesised here with different amount of ZnO.

  • Enhanced photoluminescence is obtained in composite as compared to pristine PPy.

  • FRET from ZnO to PPy is responsible for the PL enhancement.

  • Blue emission from all the composites is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantum‐dot/polymer composites. Appl Phys Lett 66(11):1316–1318

    Article  CAS  Google Scholar 

  2. Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295(5559):1506–1508

    Article  Google Scholar 

  3. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  CAS  Google Scholar 

  4. Peiró AM, Ravirajan P, Govender K, Boyle DS, O'Brien P, Bradley DD, Durrant JR (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 16(21):2088–2096

    Article  Google Scholar 

  5. Selmarten D, Jones M, Rumbles G, Yu P, Nedeljkovic J, Shaheen S (2005) Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer. J Phys Chem B 109(33):15927–15932

    Article  CAS  Google Scholar 

  6. Lutich AA, Jiang G, Susha AS, Rogach AL, Stefani FD, Feldmann J (2009) Energy transfer versus charge separation in type-ii hybrid organic− inorganic nanocomposites. Nano Lett 9(7):2636–2640

    Article  CAS  Google Scholar 

  7. Chatterjee S, Shit A, Nandi AK (2013) Nanochannel morphology of polypyrrole–ZnO nanocomposites towards dye sensitized solar cell application. J Mater Chem A 1(39):12302–12309

    Article  CAS  Google Scholar 

  8. Patil P, Gaikwad G, Patil DR, Naik J (2016) Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications. Bull Mater Sci 39(3):655–665

    Article  CAS  Google Scholar 

  9. Yan B, Wang Y, Jiang X, Liu K, Guo L (2017) Flexible photocatalytic composite film of ZnO-microrods/polypyrrole. ACS Appl Mater Interfaces 9(34):29113–29119

    Article  CAS  Google Scholar 

  10. Chougule MA, Dalavi DS, Mali S, Patil PS, Moholkar AV, Agawane GL, Patil VB (2012) Novel method for fabrication of room temperature polypyrrole–ZnO nanocomposite NO2 sensor. Measurement 45(8):1989–1996

    Article  Google Scholar 

  11. Barkade SS, Pinjari DV, Singh AK, Gogate PR, Naik JB, Sonawane SH, Pandit AB (2013) Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind Eng Chem Res 52(23):7704–7712

    Article  CAS  Google Scholar 

  12. Harpale K, Kolhe P, Bankar P, Khare R, Patil S, Maiti N, Sonawane KM (2020) Multifunctional characteristics of polypyrrole-zinc oxide (PPy-ZnO) nanocomposite: field emission investigations and gas sensing application. Synth Met 269:116542

    Article  CAS  Google Scholar 

  13. Yang Y, Chen H, Zhao B, Bao X (2004) Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J Cryst Growth 263(1–4):447–453

    Article  CAS  Google Scholar 

  14. Chougule MA, Sen S, Patil VB (2012) Facile and efficient route for preparation of polypyrrole‐ZnO nanocomposites: microstructural, optical, and charge transport properties. J Appl Polym Sci 125(S1):E541–E547

    Article  CAS  Google Scholar 

  15. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54(24):17628

    Article  CAS  Google Scholar 

  16. Clegg RM (2006) The history of FRET. In Reviews in Fluorescence 2006. Springer, Boston, MA, p 1–45

    Book  Google Scholar 

  17. Haldar KK, Sen T, Patra A (2010) Metal conjugated semiconductor hybrid nanoparticle-based fluorescence resonance energy transfer. J Phys Chem C 114(11):4869–4874

    Article  CAS  Google Scholar 

  18. Bodurov I, Yovcheva T, Sainov S (2014) Refractive index investigations of nanoparticles dispersed in water. J Phys: Conf Ser 558(Dec):012062

    Google Scholar 

  19. Ramasami AK, Ravishankar TN, Nagaraju G, Ramakrishnappa T, Teixeira SR, Balakrishna RG (2017) Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation. Bull Mater Sci 40(2):345–354

    Article  CAS  Google Scholar 

  20. Lunz M, Bradley AL, Gerard VA, Byrne SJ, Gun’ko YK, Lesnyak V, Gaponik N (2011) Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions. Phys Rev B 83(11):115423

    Article  Google Scholar 

Download references

Acknowledgements

We thank Central Research Facility (CRF) of IIT (ISM), Dhanbad for providing experimental facilities of SEM, UV-Vis-NIR spectrophotometer. We also acknowledge DST-FIST facility (Project No. SR/FST/PSI-004/2013) for using lifetime spectrometer. This work was financially supported by IIT(ISM), Dhanbad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Dey.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Kar, A.K. Effect of Forster resonance energy transfer on the photoluminescence of PPy-ZnO composite. J Sol-Gel Sci Technol 102, 679–687 (2022). https://doi.org/10.1007/s10971-021-05621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05621-y

Keywords

Navigation