Skip to main content
Log in

Convenient Conversion of Palm Fatty Acid Distillate to Biodiesel via Rice Husk Ash Catalyst

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Silica-based heterogeneous catalyst derived from rice husk ash (RHA) was used for the transformation of palm fatty acid distillate (PFAD) into biodiesel. The production of the biodiesel from PFAD was conducted via esterification and transesterification employing Huskcatacid and Huskcatbase, respectively. The biodiesel was analyzed from different parameters, i.e., amount of catalyst, oil to methanol ratio, temperature, and reaction times. The outcomes depicted Huskcatacid was efficient for PFAD esterification to produce 91.6% ester with 5 wt% catalysts and 5:1 (MeOH:PFAD), followed by the transesterification using 1 wt% Huskcatbase in 3:1 (MeOH:oil) to generate 99.73% biodiesel with a high percentage of methyl oleate (57.86%) and methyl palmitate (34.43%). Huskcatacid and Huskcatbase depicted a high surface area (7.362 m2/g and 14.493 m2/g) and high porosity (2.726 × 10−3 cm3/g and 4.985 × 10−3 cm3/g), respectively, that contributed to the efficient esterification and the easy separation of glycerol. The PFAD-derived biodiesel was tested on the Megatech®-Mark III engine and confirmed the proportional torque (ɽ) increment with the loading of B100 biodiesel. Rice husk showed promising outcomes as solid-support heterogeneous catalysts and the production of value-added products to reduce the agricultural waste management issues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

RHA catalyst preparation, PFAD conversion, and utilization for engine-related data are available for investigation from Dr. Zainab Ngaini, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94,300 Kota Samarahan, Sarawak, Malaysia. All data is available on request.

Abbreviations

ARHA:

Activated rice husk ash

BET:

Brunauer–Emmett–Teller

B100:

Neat biodiesel

B5:

Commercial diesel

CV:

Calorific values

CB5:

Commercial B5

CD:

Commercial diesel fuel

EDX:

Energy dispersive X-ray

FTIR:

Fourier transform infrared

FFA:

Free fatty acids

GCMS:

Gas chromatography–mass spectroscopy

HCl:

Hydrochloric acid

H2SO4 :

Sulfuric acid

KOH:

Potassium hydroxide

MeOH:

Methanol

NaOH:

Sodium hydroxide

PFAD:

Palm fatty acid distillate

RHA:

Rice husk ash

SIM:

Selected ion monitoring

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

References

  1. Canakci M, Gerpen JV (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210. https://doi.org/10.13031/2013.13285

    Article  CAS  Google Scholar 

  2. Chongkhong S, Tongurai C, Chetpattananondh P, Bunyakan C (2007) Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenergy 31:563–568. https://doi.org/10.1016/j.biombioe.2007.03.001

    Article  CAS  Google Scholar 

  3. Kumar P, Mandotra SK, Suseela MR, Toppo K, Joshi P (2016) Characterization and transesterification of fresh water microalgal oil. Energy Sources A: Recovery Util Environ Eff 38:857–864. https://doi.org/10.1080/15567036.2013.825662

    Article  CAS  Google Scholar 

  4. Zuo D, Lane J, Culy D et al (2013) Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal B Environ 129:342–350. https://doi.org/10.1016/j.apcatb.2012.09.029

    Article  CAS  Google Scholar 

  5. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  CAS  Google Scholar 

  6. Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161. https://doi.org/10.1016/j.biortech.2010.10.080

    Article  CAS  PubMed  Google Scholar 

  7. Sunita G, Devassy BM, Vinu A et al (2008) Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun 9:696–702. https://doi.org/10.1016/j.catcom.2007.08.007

    Article  CAS  Google Scholar 

  8. Syazwani ON, Rashid U, Mastuli MS, Taufiq-Yap YH (2019) Esterification of palm fatty acid distillate (PFAD) to biodiesel using bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renew Energy 131:187–196. https://doi.org/10.1016/j.renene.2018.07.031

    Article  CAS  Google Scholar 

  9. Yang B, Leclercq L, Clacens J-M, Nardello-Rataj V (2017) Acidic/amphiphilic silica nanoparticles: new eco-friendly Pickering interfacial catalysis for biodiesel production. Green Chem 19:4552–4562. https://doi.org/10.1039/C7GC01910F

    Article  CAS  Google Scholar 

  10. Carlucci C, Degennaro L, Luisi R (2019) Titanium dioxide as a catalyst in biodiesel production. Catalysts 9:75. https://doi.org/10.3390/catal9010075

    Article  CAS  Google Scholar 

  11. Akinfalabi S-I, Rashid U, Shean TYC et al (2019) Esterification of palm fatty acid distillate for biodiesel production catalyzed by synthesized kenaf seed cake-based sulfonated catalyst. Catalysts 9:482. https://doi.org/10.3390/catal9050482

    Article  CAS  Google Scholar 

  12. Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. J Am Oil Chem Soc 83:79–91. https://doi.org/10.1007/s11746-006-1179-x

    Article  CAS  Google Scholar 

  13. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777. https://doi.org/10.1016/j.fuproc.2009.03.010

    Article  CAS  Google Scholar 

  14. Mabena LF, Sinha Ray S, Mhlanga SD, Coville NJ (2011) Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl Nanosci 1:67–77. https://doi.org/10.1007/s13204-011-0013-4

    Article  CAS  Google Scholar 

  15. Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè AM (2010) Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl Catal A: Gen 378:160–168. https://doi.org/10.1016/j.apcata.2010.02.016

    Article  CAS  Google Scholar 

  16. Jacobson K, Gopinath R, Meher L, Dalai A (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ 85:86–91. https://doi.org/10.1016/j.apcatb.2008.07.005

    Article  CAS  Google Scholar 

  17. Arzamendi G, Campo I, Arguiñarena E et al (2007) Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH. Chem Eng J 134:123–130. https://doi.org/10.1016/j.cej.2007.03.049

    Article  CAS  Google Scholar 

  18. Kostić M, Tasić M, Đalović I et al (2018) Optimization of biodiesel production from corn oil by methanolysis catalyzed by corn cob ash. Reciklaza Odrzivi Razvoj 11:53–62. https://doi.org/10.5937/ror1801053K

    Article  Google Scholar 

  19. Ngaini Z, Shahrom FD, Jamil N et al (2016) Imperata cylindrica sp as novel silica-based heterogeneous catalysts for transesterification of palm oil mill sludge. J Oleo Sci 65:507–515. https://doi.org/10.5650/jos.ess16014

    Article  CAS  PubMed  Google Scholar 

  20. Azizan FA, Marhami NS, Rahman ZA et al (2020) Evaluation of the use of tiles waste in stabilization of subgrade layer with rice husk ash as an activator agent. IOP Conf Ser Earth Environ Sci 476:012042. https://doi.org/10.1088/1755-1315/476/1/012042

    Article  Google Scholar 

  21. Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57:818–821. https://doi.org/10.1016/S0167-577X(02)00879-0

    Article  CAS  Google Scholar 

  22. Idris NA, Lau HLN, Wafti NSAbd et al (2021) Glycerolysis of palm fatty acid distillate (PFAD) as biodiesel feedstock using heterogeneous catalyst. Waste Biomass Valoriz 12:735–744. https://doi.org/10.1007/s12649-020-00995-6

    Article  CAS  Google Scholar 

  23. Chen K-T, Wang J-X, Dai Y-M et al (2013) Rice husk ash as a catalyst precursor for biodiesel production. J Taiwan Inst Chem Eng 44:622–629. https://doi.org/10.1016/j.jtice.2013.01.006

    Article  CAS  Google Scholar 

  24. Roschat W, Siritanon T, Yoosuk B, Promarak V (2016) Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energy Convers Manag 119:453–462. https://doi.org/10.1016/j.enconman.2016.04.071

    Article  CAS  Google Scholar 

  25. Chen W, Ge X, Xu F et al (2015) Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett 25:2998–3004. https://doi.org/10.1016/j.bmcl.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  26. Hazmi B, Rashid U, Taufiq-Yap YH et al (2020) Supermagnetic nano-bifunctional catalyst from rice husk: synthesis, characterization and application for conversion of used cooking oil to biodiesel. Catalysts 10:225. https://doi.org/10.3390/catal10020225

    Article  CAS  Google Scholar 

  27. Hindryawati N, Widodo NT, MohS A et al (2020) Biodiesel production using palm fatty acid distillate and rice husk silica supported NiSO4 as catalyst. AIP Conf Proc 2237:020020. https://doi.org/10.1063/5.0005557

    Article  CAS  Google Scholar 

  28. Jumaah MA, MohamadYusoff MF, Salimon J, Bahadi M (2019) Physical characteristics of palm fatty acid distillate. J Chem Pharm Sci 12:1–5. https://doi.org/10.30558/jchps.20191201001

    Article  Google Scholar 

  29. Ngaini Z, Wahi R, Hussain H, Bahrin NQ, Hasana NH (2021) Heavy metal adsorbent of carbon from sago liquid biowaste for sustainable technology. In: Zaini MAA, Jusoh M, Othman N (eds) Proceedings of the 3rd International Conference on Separation Technology, 1st edn. Springer, Singapore, pp 205–216. https://doi.org/10.1007/978-981-16-0742-4_14

  30. Kastner JR, Miller J, Geller DP et al (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190:122–132. https://doi.org/10.1016/j.cattod.2012.02.006

    Article  CAS  Google Scholar 

  31. Refaat AA (2011) Biodiesel production using solid metal oxide catalysts. Int J Environ Sci Technol 8:203–221. https://doi.org/10.1007/BF03326210

    Article  CAS  Google Scholar 

  32. Makshut NA, Ngaini Z, Wahi R et al (2020) Nano-sized adsorbent from pyrolysed sago activated sludge for removal of Pb(II) from aqueous solution. Pertanika J Sci Technol 28:893–916

    Google Scholar 

  33. Rajan Y, Ngaini Z, Wahi R (2019) Novel adsorbent from sago-grafted silica for removal of methylene blue. Int J Environ Sci Technol 16:4531–4542. https://doi.org/10.1007/s13762-018-2043-x

    Article  CAS  Google Scholar 

  34. Yaşar F (2020) Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 264:116817. https://doi.org/10.1016/j.fuel.2019.116817

    Article  CAS  Google Scholar 

  35. Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34:290–318. https://doi.org/10.1177/0144598716630166

    Article  CAS  Google Scholar 

  36. Fu Z, Wan H, Hu X et al (2012) Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. React Kinet Mech Catal 107:203–213. https://doi.org/10.1007/s11144-012-0466-9

    Article  CAS  Google Scholar 

  37. Fu Z, Wan H, Cui Q et al (2011) Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid. React Kinet Mech Catal 104:313–321. https://doi.org/10.1007/s11144-011-0348-6

    Article  CAS  Google Scholar 

  38. Janaun J, Ellis N (2011) Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl Catal Gen 394:25–31. https://doi.org/10.1016/j.apcata.2010.12.016

    Article  CAS  Google Scholar 

  39. Shu Q, Zhang Q, Xu G et al (2009) Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process Technol 90:1002–1008. https://doi.org/10.1016/j.fuproc.2009.03.007

    Article  CAS  Google Scholar 

  40. Perrichon V, Durupty MC (1988) Thermal stability of alkali metals deposited on oxide supports and their influence on the surface area of the support. Appl Catal 42:217–227. https://doi.org/10.1016/0166-9834(88)80003-4

    Article  CAS  Google Scholar 

  41. Gole VL, Gogate PR (2012) A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Process Process Intensif 53:1–9. https://doi.org/10.1016/j.cep.2011.12.008

    Article  CAS  Google Scholar 

  42. Dai Y-M, Chen K-T, Wang Y-J, Chen C-C (2014) Application of peanut husk ash as a low-cost solid catalyst for biodiesel production. Int J Chem Eng Appl 5:276–280. https://doi.org/10.7763/IJCEA.2014.V5.393

    Article  CAS  Google Scholar 

  43. Moser BR (2009) Biodiesel production, properties, and feedstocks. Vitro Cell Dev Biol - Plant 45:229–266. https://doi.org/10.1007/s11627-009-9204-z

    Article  CAS  Google Scholar 

  44. Chang AS, Sherazi STH, Kandhro AA et al (2016) Characterization of palm fatty acid distillate of different oil processing industries of Pakistan. J Oleo Sci 65:897–901. https://doi.org/10.5650/jos.ess16073

    Article  CAS  PubMed  Google Scholar 

  45. Lokman IM, Rashid U, Zainal Z et al (2014) Microwave-assisted biodiesel production by esterification of palm fatty acid distillate. J Oleo Sci 63:849–855. https://doi.org/10.5650/jos.ess14068

    Article  CAS  PubMed  Google Scholar 

  46. Meher LC, Dharmagadda VSS, Naik SN (2006) Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol 97:1392–1397. https://doi.org/10.1016/j.biortech.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  47. Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25:21–31. https://doi.org/10.1016/j.ejpe.2015.06.007

    Article  Google Scholar 

  48. Farooq S, Munawar MA, Ngaini Z (2019) Two pot and one pot synthetic methodologies of Hantzsch pyridines. Curr Org Chem 22:2671–2680. https://doi.org/10.2174/1385272822666181109124547

    Article  CAS  Google Scholar 

  49. Al-Saadi A, Mathan B, He Y (2020) Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew Energy 158:388–399. https://doi.org/10.1016/j.renene.2020.05.171

    Article  CAS  Google Scholar 

  50. Ganesan S, Nadarajah S, Shamsudin NN et al (2020) Esterification of palm fatty acid distillate using ammonium ferric sulfate-calcium silicate as a heterogeneous acid catalyst. BioEnergy Res 13:1297–1307. https://doi.org/10.1007/s12155-020-10143-6

    Article  CAS  Google Scholar 

  51. Faruque MO, Razzak SA, Hossain MM (2020) Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts 10:1025. https://doi.org/10.3390/catal10091025

    Article  CAS  Google Scholar 

  52. Helwani Z, Ramli M, Saputra E et al (2020) Impregnation of CaO from eggshell waste with magnetite as a solid catalyst (Fe3O4/CaO) for transesterification of palm oil off-grade. Catalysts 10:164. https://doi.org/10.3390/catal10020164

    Article  CAS  Google Scholar 

  53. Argyle M, Bartholomew C (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269. https://doi.org/10.3390/catal5010145

    Article  CAS  Google Scholar 

  54. Lang X, Dalai AK, Bakhshi NN et al (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80:53–62. https://doi.org/10.1016/S0960-8524(01)00051-7

    Article  CAS  PubMed  Google Scholar 

  55. Uprety BK, Chaiwong W, Ewelike C, Rakshit SK (2016) Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers Manag 115:191–199. https://doi.org/10.1016/j.enconman.2016.02.032

    Article  CAS  Google Scholar 

  56. Hara M (2009) Environmentally benign production of biodiesel using heterogeneous catalysts. Chemsuschem 2:129–135. https://doi.org/10.1002/cssc.200800222

    Article  CAS  PubMed  Google Scholar 

  57. Nakakita K, Akihama K, Weissman W, Farrell JT (2005) Effect of the hydrocarbon molecular structure in diesel fuel on the in-cylinder soot formation and exhaust emissions. Int J Engine Res 6:187–205. https://doi.org/10.1243/146808705X7400

    Article  CAS  Google Scholar 

Download references

Funding

The authors would also like to thank Universiti Malaysia Sarawak for the financial support under Tun Openg Chair (F07/TOC/1742/2018).

Author information

Authors and Affiliations

Authors

Contributions

ZN and RW conceived and designed the study. NJ and FDS have conducted the experiments and wrote the manuscript. ZAA helped in combustion experiments. SF helped in writing the manuscript. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Zainab Ngaini.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3813 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngaini, Z., Jamil, N., Wahi, R. et al. Convenient Conversion of Palm Fatty Acid Distillate to Biodiesel via Rice Husk Ash Catalyst. Bioenerg. Res. 15, 1316–1326 (2022). https://doi.org/10.1007/s12155-021-10331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10331-y

Keywords

Navigation