Skip to main content
Log in

Informosomes Travel in Time: An Early mRNA Concept in the Current mRNP Landscape

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Messenger RNA is complexed with proteins throughout its life cycle. The first mRNA-containing particles of non-ribosomal nature, named informosomes, were discovered in cytoplasmic extracts of fish embryos by the laboratory of Alexander Spirin, and later described in live cells. Over time, various other nuclear and cytoplasmic mRNA-containing ribonucleoproteins (mRNPs) have been found and characterized. Although these mRNPs are very diverse in their subcellular localization, structure and functions, they share many common characteristics with informosomes. In this mini-review, I will discuss the discovery of informosomes, their characteristics and proposed functions, and their potential relationship to other mRNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure

Similar content being viewed by others

Abbreviations

mRNPs:

messenger RNA nucleoprotein particles

PBs:

Processing Bodies

RBPs:

RNA-binding proteins

SGs:

Stress Granules

References

  1. Bentley, D. L. (2014) Coupling mRNA processing with transcription in time and space, Nat. Rev. Genet., 15, 163-175, https://doi.org/10.1038/nrg3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luna, R., Gaillard, H., Gonzalez-Aguilera, C., and Aguilera, A. (2008) Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus, Chromosoma, 117, 319-331, https://doi.org/10.1007/s00412-008-0158-4.

    Article  CAS  PubMed  Google Scholar 

  3. Corley, M., Burns, M. C., and Yeo, G. W. (2020) How RNA-binding proteins interact with RNA: molecules and mechanisms, Mol. Cell, 78, 9-29, https://doi.org/10.1016/j.molcel.2020.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khong, A., and Parker, R. (2020) The landscape of eukaryotic mRNPs, RNA, 26, 229-239, https://doi.org/10.1261/rna.073601.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hershey, J. W. B., Sonenberg, N., and Mathews, M. B. (2019) Principles of translational control, Cold Spring Harb. Perspect. Biol., 11, a032607, https://doi.org/10.1101/cshperspect.a032607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mateu-Regue, A., Nielsen, F. C., and Christiansen, J. (2020) Cytoplasmic mRNPs revisited: singletons and condensates, Bioessays, 42, e2000097, https://doi.org/10.1002/bies.202000097.

    Article  CAS  PubMed  Google Scholar 

  7. Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events, Nat. Rev. Genet., 8, 533-543, https://doi.org/10.1038/nrg2111.

    Article  CAS  PubMed  Google Scholar 

  8. Aitkhozhin, M. A., Belitsina, N. V., and Spirin, A. S. (1964) Nucleic Acids in the early stages of development of fish embryos (based on the loach Misgurnus Fossilis), Biokhimiia, 29, 169-175.

    CAS  PubMed  Google Scholar 

  9. Belitsina, N. V., Aitkhozhin, M. A., Gavrilova, L. P., and Spirin, A. S. (1964) The messenger ribonucleic acids of differentiating animal cells, Biokhimiia, 29, 363-374.

    CAS  PubMed  Google Scholar 

  10. Spirin, A. S., Belitsina, N. V., and Lerman, M. I. (1965) Use of formaldehyde fixation for studies of ribonucleoprotein particles by caesium chloride density-gradient centrifugation, J. Mol. Biol., 14, 611-615, https://doi.org/10.1016/s0022-2836(65)80213-3.

    Article  CAS  PubMed  Google Scholar 

  11. Spirin, A. S., Belitsina, N. V., and Aitkhozhin, M. A. (1964) Messenger RNA in early embryogenesis, Zhurn. Obshch. Biol., 25, 321-338.

    CAS  Google Scholar 

  12. Ovchinnikov, L. P., Ajtkhozhin, M. A., Bystrova, T. F., and Spirin, A. S. (1969) Newt embryo informosomes: 1. Sedimentation and density parameters, Mol. Biol. (U.S.S.R.), 3, 449-464.

    CAS  Google Scholar 

  13. Spirin, A. S. (1969) The Second Sir Hans Krebs Lecture. Informosomes, Eur. J. Biochem., 10, 20-35.

    Article  CAS  Google Scholar 

  14. Spirin, A. S., and Nemer, M. (1965) Messenger RNA in early sea-urchin embryos: cytoplasmic particles, Science, 150, 214-217, https://doi.org/10.1126/science.150.3693.214.

    Article  CAS  PubMed  Google Scholar 

  15. Belitsina, N. V., Ovchinnikov, L. P., Spirin, A. S., Gendon, Yu. Z., and Chernos, V. I. (1968) Informosomes of HeLa cells infected with vaccinia virus, Mol. Biol. (U.S.S.R.), 2.

  16. Infante, A. A., and Nemer, M. (1968) Heterogeneous ribonucleoprotein particles in the cytoplasm of sea urchin embryos, J. Mol. Biol., 32, 543-565, https://doi.org/10.1016/0022-2836(68)90342-2.

    Article  CAS  PubMed  Google Scholar 

  17. Joklik, W. K., and Becker, Y. (1965) Studies on the genesis of polyribosomes. II. The association of nascent messenger RNA with the 40 S subribosomal particle, J. Mol. Biol., 13, 511-520, https://doi.org/10.1016/s0022-2836(65)80113-9.

    Article  CAS  PubMed  Google Scholar 

  18. Shatkin, A. J., Sebring, E. D., and Salzman, N. P. (1965) Vaccinia virus directed RNA: its fate in the presence of actinomycin, Science, 148, 87-90, https://doi.org/10.1126/science.148.3666.87.

    Article  CAS  PubMed  Google Scholar 

  19. McConkey, E. H., and Hopkins, J. W. (1965) Subribosomal particles and the transport of messenger RNA in HeLa cells, J. Mol. Biol., 14, 257-270, https://doi.org/10.1016/s0022-2836(65)80245-5.

    Article  CAS  PubMed  Google Scholar 

  20. Kafatos, F. C. (1968) Cytoplasmic particles carrying rapidly labeled RNA in developing insect epidermis, Proc. Natl. Acad. Sci. USA, 59, 1251-1258, https://doi.org/10.1073/pnas.59.4.1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henshaw, E. C. (1968) Messenger RNA in rat liver polyribosomes: evidence that it exists as ribonucleoprotein particles, J. Mol. Biol., 36, 401-411, https://doi.org/10.1016/0022-2836(68)90164-2.

    Article  CAS  PubMed  Google Scholar 

  22. Perry, R. P., and Kelley, D. E. (1968) Messenger RNA-protein complexes and newly synthesized ribosomal subunits: analysis of free particles and components of polyribosomes, J. Mol. Biol., 35, 37-59, https://doi.org/10.1016/s0022-2836(68)80035-x.

    Article  CAS  PubMed  Google Scholar 

  23. Levy, H. B., and Carter, W. A. (1968) Molecular basis of the action of interferon, J. Mol. Biol., 31, 561-577, https://doi.org/10.1016/0022-2836(68)90428-2.

    Article  CAS  PubMed  Google Scholar 

  24. Volkova, M. Y., Zaides, V. M., and Zaslavsky, V. G. (1969) Slowly sedimenting particles present in cytoplasmic extract of Ehrlich ascites cells infected by Sendai virus, Mol. Biol. (U.S.S.R.), 3, 4-9.

    Google Scholar 

  25. Ovchinnikov, L. P., Belitsina, N. V., Avanesov, A., and Spirin, A. S. (1969) Postribosomal RNA-containing particles of cytoplasm of animal cells according to CsCl density gradient centrifugation data, Dokl. Akad. Nauk SSSR, 186, 1202-1205.

    CAS  PubMed  Google Scholar 

  26. Neifakh, A. A. (1959) Method of inactivation of nuclei by radiation and its possible applications for the investigation of nuclei functions during early development of fish, Zhurn. Obshch. Biol. (Russian), 20, 202-207.

    CAS  Google Scholar 

  27. Samarina, O. P., Asriian, I. S., and Georgiev, G. P. (1965) Isolation of nuclear nucleoproteins containing informational ribonucleic acid, Dokl. Akad. Nauk SSSR, 163, 1510-1513.

    CAS  PubMed  Google Scholar 

  28. Samarina, O. P., Krichevskaya, A. A., and Georgiev, G. P. (1966) Nuclear ribonucleoprotein particles containing messenger ribonucleic acid, Nature, 210, 1319-1322, https://doi.org/10.1038/2101319a0.

    Article  CAS  PubMed  Google Scholar 

  29. Samarina, O. P., Lerman, M. I., Tumanian, V. D., Anan’eva, L. N., and Georgiev, G. P. (1965) Characteristics of chromosomal information RNA, Biokhimiia, 30, 880-893.

    CAS  PubMed  Google Scholar 

  30. Samarina, O. P., Lukanidin, E. M., and Georgiev, G. P. (1967) On the structural organization of the nuclear complexes containing messenger RNA, Biochim. Biophys. Acta, 142, 561-564, https://doi.org/10.1016/0005-2787(67)90642-9.

    Article  CAS  PubMed  Google Scholar 

  31. Samarina, O. P., Lukanidin, E. M., Molnar, J., and Georgiev, G. P. (1968) Structural organization of nuclear complexes containing DNA-like RNA, J. Mol. Biol., 33, 251-263, https://doi.org/10.1016/0022-2836(68)90292-1.

    Article  CAS  PubMed  Google Scholar 

  32. Samarina, O. P., Molnar, J., Lukanidin, E. M., Bruskov, V. I., Krichevskaya, A. A., and Georgiev, G. P. (1967) Reversible dissociation of nuclear ribonucleoprotein particle containing mRNA into RNA and protein, J. Mol. Biol., 27, 187-191, https://doi.org/10.1016/0022-2836(67)90359-2.

    Article  CAS  PubMed  Google Scholar 

  33. Girard, M., and Baltimore, D. (1966) The effect of HeLa cell cytoplasm on the rate of sedimentation of RNA, Proc. Natl. Acad. Sci. USA, 56, 999-1002, https://doi.org/10.1073/pnas.56.3.999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ovchinnikov, L. P., Voronina, A. S., Stepanov, A. S., Belitsina, N. V., and Spirin, A. S. (1968) Informosome-like complexes were formed by RNA adding to animal cell homogenates, Mol. Biol. (U.S.S.R.), 2, 752-761.

    CAS  Google Scholar 

  35. Ovchinnikov, L. P., Avanesov, A. C., and Spirin, A. S. (1969) Informosomes from loach embryos, Molek. Biol. (U.S.S.R.), 3, 465471.

    Google Scholar 

  36. Ovchinnikov, L. P., and Avanesov, A. C. (1969) Informosomes of loach embryos. 3. Specificity of interaction of “informosome-forming” protein with RNA, Mol. Biol. (U.S.S.R.), 3, 5-12.

    Google Scholar 

  37. Spirin, A. S. (1994) Storage of messenger RNA in eukaryotes: envelopment with protein, translational barrier at 5′ side, or conformational masking by 3′ side? Mol. Reprod. Dev., 38, 107-117, https://doi.org/10.1002/mrd.1080380117.

    Article  CAS  PubMed  Google Scholar 

  38. Blobel, G. (1972) Protein tightly bound to globin mRNA, Biochem. Biophys. Res. Commun., 47, 88-95, https://doi.org/10.1016/s0006-291x(72)80014-7.

    Article  CAS  PubMed  Google Scholar 

  39. Blobel, G. (1973) A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs, Proc. Natl. Acad. Sci. USA, 70, 924-928, https://doi.org/10.1073/pnas.70.3.924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, S. K., Pluskal, M. G., and Sarkar, S. (1979) Thermal chromatography of eukaryotic messenger ribonucleoprotein particles on oligo (dT)-cellulose. Evidence for common mRNA-associated proteins in various cell types, FEBS Lett., 97, 84-90, https://doi.org/10.1016/0014-5793(79)80058-7.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, A., and Pederson, T. (1975) Comparison of proteins bound to heterogeneous nuclear RNA and messenger RNA in HeLa cells, J. Mol. Biol., 96, 353-365, https://doi.org/10.1016/0022-2836(75)90165-5.

    Article  CAS  PubMed  Google Scholar 

  42. Morel, C., Kayibanda, B., and Scherrer, K. (1971) Proteins associated with globin messenger RNA in avian erythroblasts: isolation and comparison with the proteins bound to nuclear messenger-likie RNA, FEBS Lett., 18, 84-88, https://doi.org/10.1016/0014-5793(71)80413-1.

    Article  CAS  PubMed  Google Scholar 

  43. van Venrooij, W. J., van Eekelen, C. A., Jansen, R. T., and Princen, J. M. (1977) Specific poly-A-binding protein of 76,000 molecular weight in polyribosomes is not present on poly A of free cytoplasmic mRNP, Nature, 270, 189-191, https://doi.org/10.1038/270189a0.

    Article  CAS  PubMed  Google Scholar 

  44. Minich, W. B., Maidebura, I. P., and Ovchinnikov, L. P. (1993) Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes, Eur. J. Biochem., 212, 633-638, https://doi.org/10.1111/j.1432-1033.1993.tb17701.x.

    Article  CAS  PubMed  Google Scholar 

  45. Mordovkina, D., Lyabin, D. N., Smolin, E. A., Sogorina, E. M., Ovchinnikov, L. P., and Eliseeva, I. (2020) Y-box binding proteins in mRNP assembly, translation, and stability control, Biomolecules, 10, 591, https://doi.org/10.3390/biom10040591.

    Article  CAS  PubMed Central  Google Scholar 

  46. Cockman, E., Anderson, P., and Ivanov, P. (2020) TOP mRNPs: molecular mechanisms and principles of regulation, Biomolecules, 10, 969, https://doi.org/10.3390/biom10070969.

    Article  CAS  PubMed Central  Google Scholar 

  47. Ivanov, P., and Anderson, P. (2013) Post-transcriptional regulatory networks in immunity, Immunol. Rev., 253, 253-272, https://doi.org/10.1111/imr.12051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stebbins-Boaz, B., and Richter, J. D. (1997) Translational control during early development, Crit. Rev. Eukaryot. Gene Expr., 7, 73-94, https://doi.org/10.1615/critreveukargeneexpr.v7.i1-2.50.

    Article  CAS  PubMed  Google Scholar 

  49. Teixeira, F. K., and Lehmann, R. (2019) Translational control during developmental transitions, Cold Spring Harb. Perspect. Biol., 11, a032987, https://doi.org/10.1101/cshperspect.a032987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neyfakh, A. A. (1964) Radiation investigation of nucleo-cytoplasmic interrelations in morphogenesis and biochemical differentiation, Nature, 201, 880-884, https://doi.org/10.1038/201880a0.

    Article  CAS  PubMed  Google Scholar 

  51. Ovchinnikov, L. P., Bystrova, T. F., and Spirin, A. S. (1969) Sedimentation and density characteristics of ribosomes and their subunits from embryonic groundlings, Dokl. Akad. Nauk SSSR, 185, 210-213.

    CAS  PubMed  Google Scholar 

  52. Spirin, A. S. (1978) Eukaryotic messenger RNA and informosomes. Omnia mea mecum porto, FEBS Lett., 88, 15-17, https://doi.org/10.1016/0014-5793(78)80596-1.

    Article  CAS  PubMed  Google Scholar 

  53. Spiegelman, S. (1961) The relation of informational RNA to DNA, Cold Spring Harb. Symp. Quant. Biol., 26, 75-90, https://doi.org/10.1101/sqb.1961.026.01.013.

    Article  CAS  PubMed  Google Scholar 

  54. Spiegelman, S., Hall, B. D., and Storck, R. (1961) The occurrence of natural DNA–RNA complexes in E. coli infected with T2, Proc. Natl. Acad. Sci. USA, 47, 1135-1141, https://doi.org/10.1073/pnas.47.8.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bjork, P., and Wieslander, L. (2017) Integration of mRNP formation and export, Cell. Mol. Life Sci., 74, 2875-2897, https://doi.org/10.1007/s00018-017-2503-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fazal, F. M., Han, S., Parker, K. R., Kaewsapsak, P., Xu, J., et al. (2019) Atlas of subcellular RNA localization revealed by APEX-Seq, Cell, 178, 473-490.e426, https://doi.org/10.1016/j.cell.2019.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kong, J., and Lasko, P. (2012) Translational control in cellular and developmental processes, Nat. Rev. Genet., 13, 383-394, https://doi.org/10.1038/nrg3184.

    Article  CAS  PubMed  Google Scholar 

  58. Singh, G., Pratt, G., Yeo, G. W., and Moore, M. J. (2015) The clothes make the mRNA: past and present trends in mRNP fashion, Annu. Rev. Biochem., 84, 325-354, https://doi.org/10.1146/annurev-biochem-080111-092106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol., 11, 113-127, https://doi.org/10.1038/nrm2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hellen, C. U. T. (2018) Translation termination and ribosome recycling in eukaryotes, Cold Spring Harb. Perspect. Biol., 10, a032656, https://doi.org/10.1101/cshperspect.a032656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998) Circularization of mRNA by eukaryotic translation initiation factors, Mol. Cell, 2, 135-140, https://doi.org/10.1016/s1097-2765(00)80122-7.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, H., Ji, X., Li, P., Liu, C., Lou, J., et al. (2020) Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases, Sci. China Life Sci., 63, 953-985, https://doi.org/10.1007/s11427-020-1702-x.

    Article  PubMed  Google Scholar 

  63. Hyman, A. A., Weber, C. A., and Julicher, F. (2014) Liquid-liquid phase separation in biology, Annu. Rev. Cell Dev. Biol., 30, 39-58, https://doi.org/10.1146/annurev-cellbio-100913-013325.

    Article  CAS  PubMed  Google Scholar 

  64. Ivanov, P., Kedersha, N., and Anderson, P. (2019) Stress granules and processing bodies in translational control, Cold Spring Harb. Perspect. Biol., 11, a032813, https://doi.org/10.1101/cshperspect.a032813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo, Y., Na, Z., and Slavoff, S. A. (2018) P-Bodies: composition, properties, and functions, Biochemistry, 57, 2424-2431, https://doi.org/10.1021/acs.biochem.7b01162.

    Article  CAS  PubMed  Google Scholar 

  66. Hofmann, S., Kedersha, N., Anderson, P., and Ivanov, P. (2021) Molecular mechanisms of stress granule assembly and disassembly, Biochim. Biophys. Acta Mol. Cell Res., 1868, 118876, https://doi.org/10.1016/j.bbamcr.2020.118876.

    Article  CAS  PubMed  Google Scholar 

  67. Riggs, C. L., Kedersha, N., Ivanov, P., and Anderson, P. (2020) Mammalian stress granules and P bodies at a glance, J. Cell Sci., 133, https://doi.org/10.1242/jcs.242487.

    Article  CAS  PubMed  Google Scholar 

  68. Advani, V. M., and Ivanov, P. (2019) Translational control under stress: reshaping the translatome, Bioessays, 41, e1900009, https://doi.org/10.1002/bies.201900009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitchell, S. F., and Parker, R. (2014) Principles and properties of eukaryotic mRNPs, Mol. Cell, 54, 547-558, https://doi.org/10.1016/j.molcel.2014.04.033.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Pavel Ivanov thanks members of his lab and Dr. Claire Riggs for help in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ivanov.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain any studies with of human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, P. Informosomes Travel in Time: An Early mRNA Concept in the Current mRNP Landscape. Biochemistry Moscow 86, 1044–1052 (2021). https://doi.org/10.1134/S0006297921090029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921090029

Keywords

Navigation