Skip to main content
Log in

VPg of Potato Virus Y and Potato Cap-Binding eIF4E Factors: Selective Interaction and Its Supposed Mechanism

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Scholthof, K.-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., et al. (2011) Top 10 plant viruses in molecular plant pathology, Mol. Plant Pathol., 12, 938-954, https://doi.org/10.1111/J.1364-3703.2011.00752.X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quenouille, J., Vassilakos, N., and Moury, B. (2013) Potato virus Y: a major crop pathogen that has provided majorinsights into the evolution of viral pathogenicity, Mol. Plant Pathol., 14, 439-452, https://doi.org/10.1111/mpp.12024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robaglia, C., and Caranta, C. (2006) Translation initiation factors: a weak link in plant RNA virus infection, Trends Plant Sci., 11, 40-45, https://doi.org/10.1016/j.tplants.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  4. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., et al. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E), Plant J., 32, 1067-1075, https://doi.org/10.1046/j.1365-313x.2002.01499.x.

    Article  CAS  PubMed  Google Scholar 

  5. Charron, C., Nicolaï, M., Gallois, J. L., Robaglia, C., Moury, B., et al. (2008) Natural variation and functional analyses provide evidence for co‐evolution between plant eIF4E and potyviral VPg, Plant J., 54, 56-68, https://doi.org/10.1111/j.1365-313X.2008.03407.x.

    Article  CAS  PubMed  Google Scholar 

  6. Lebaron, C., Rosado, A., Sauvage, C., Gauffier, C., German-Retana, S., et al. (2016) A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to PVY in tomato albeit with a low durability, J. Gen. Virol., 97, 3063-3072.

    Article  CAS  Google Scholar 

  7. Rubio, M., Nicolaï, M., Caranta, C., and Palloix, A. (2009) Allele mining in the pepper gene pool provided new complementation effects between pvr2-eIF4E alleles and pvr6-eIF (iso) 4E for resistance to the Pepper veinal mottle virus, J. Gen. Virol., 90, 2808-2814, https://doi.org/10.1099/vir.0.013151-0.

    Article  CAS  PubMed  Google Scholar 

  8. Julio, E., Cotucheau, J., Decorps, C., Volpatti, R., Sentenac, C., et al. (2015) A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the “va” tobacco recessive resistance to potyviruses, Plant Mol. Biol. Report., 33, 609-623, https://doi.org/10.1007/s11105-014-0775-4.

    Article  CAS  Google Scholar 

  9. Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I., and Jahn, M. (2011) Engineering virus resistance using a modified potato gene, Plant Biotechnol. J., 9, 1014-1021.

    Article  CAS  Google Scholar 

  10. Gutierrez Sanchez, P., Babujee, L., Mesa, H. J., Arcibal, E., Gannon, M., et al. (2020) Overexpression of a modified eIF4E regulates potato virus Y resistance at the transcriptional level in potato, BMC Genomics, 21, 18, https://doi.org/10.1186/s12864-019-6423-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poulicard, N., Pacios, L. F., Gallois, J. L., Piñero, D., and García-Arenal, F. (2016) Human management of a wild plant modulates the evolutionary dynamics of a gene determining recessive resistance to virus infection, PLoS Genet., 12, e1006214, https://doi.org/10.1371/journal.pgen.1006214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., and Caranta, C. (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato, PLoS One, 6, e29595, https://doi.org/10.1371/journal.pone.0029595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gauffier, C., Lebaron, C., Moretti, A., Constant, C., Moquet, F., et al. (2016) A TILLING approach to generate broad‐spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy, Plant J., 85, 717-729, https://doi.org/10.1111/tpj.13136.

    Article  CAS  PubMed  Google Scholar 

  14. Michel, V., Julio, E., Candresse, T., Cotucheau, J., Decorps, C., et al. (2019) A complex eIF4E locus impacts the durability of va resistance to Potato virus Y in tobacco, Mol. Plant Pathol., 20, 1051-1066, https://doi.org/10.1111/mpp.12810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masuta, C., Nishimura, M., Morishita, H., and Hataya, T. (1999) A single amino acid change in viral genome-associated protein of potato virus Y Correlates with resistance breaking in ‘virgin a mutant’ tobacco, Phytopathology, 89, 118-123, https://doi.org/10.1094/PHYTO.1999.89.2.118.

    Article  CAS  PubMed  Google Scholar 

  16. Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., and Moury, B. (2007) Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper, J. Gen. Virol., 88, 1594-1601, https://doi.org/10.1099/vir.0.82702-0.

    Article  CAS  PubMed  Google Scholar 

  17. Takakura, Y., Udagawa, H., Shinjo, A., and Koga, K. (2018) Mutation of a Nicotiana tabacum L. eukaryotic translation‐initiation factor gene reduces susceptibility to a resistance‐breaking strain of Potato virus Y, Mol. Plant Pathol., 19, 2124-2133, https://doi.org/10.1111/mpp.12686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baebler, S., Coll, A., and Gruden, K. (2020) Plant molecular responses to potato virus Y: a continuum of outcomes from sensitivity and tolerance to resistance, Viruses, 12, 217, https://doi.org/10.3390/v12020217.

    Article  CAS  PubMed Central  Google Scholar 

  19. Duan, H., Richael, C., and Rommens, C. (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1, Transgenic Res., 21, 929-938, https://doi.org/10.1007/s11248-011-9576-9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, C., Zarka, K., Zarka, D., Whitworth, J., and Douches, D. (2021) Expression of the tomato pot-1 gene confers potato virus Y (PVY) resistance in susceptible potato varieties, Am. J. Potato Res., 98, 42-50, https://doi.org/10.1007/s12230-020-09815-y.

    Article  CAS  Google Scholar 

  21. Cavatorta, J. R., Savage, A. E., Yeam, I., Gray, S. M., and Jahn, M. (2008) Positive Darwinian selection at single amino acid sites conferring plant virus resistance, J. Mol. Evol., 67, 551-559, https://doi.org/10.1007/s00239-008-9172-7.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, A., and Krishnaswamy, S. (2012) Eukaryotic translation initiation factor 4E‐mediated recessive resistance to plant viruses and its utility in crop improvement, Mol. Plant Pathol., 13, 795-803, https://doi.org/10.1111/j.1364-3703.2012.00791.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grzela, R., Szolajska, E., Ebel, C., Madern, D., Favier, A., et al. (2008) Virulence Factor of potato virus Y, genome-attached terminal protein VPg, is a highly disordered protein, J. Biol. Chem., 283, 213-221, https://doi.org/10.1074/jbc.M705666200.

    Article  CAS  PubMed  Google Scholar 

  24. Moury, B., Charron, C., Janzac, B., Simon, V., Gallois, J. L., et al. (2014) Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirusgenome-linked protein (VPg): a game of mirrors impactingresistance spectrum and durability, Infect. Genet. Evol., 27, 472-480, https://doi.org/10.1016/j.meegid.2013.11.024.

    Article  CAS  PubMed  Google Scholar 

  25. De Oliveira, L., Volpon, L., Rahardjo, A. K., Osborne, M. J., Culjkovic-Kraljacic, B., et al. (2019) Structural studies of the eIF4E–VPg complex reveal a direct competition for capped RNA: implications for translation, Proc. Natl. Acad. Sci. USA, 116, 24056-24065, https://doi.org/10.1073/pnas.1904752116.

    Article  CAS  Google Scholar 

  26. Walter, J., Barra, A., Charon, J., Tavert-Roudet, G., and Michon, T. (2020) Spectroscopic Investigation of the kinetic mechanism involved in the association of potyviral VPg with the host plant translation initiation factor eIF4E, Int. J. Mol. Sci., 21, 5618-5633, https://doi.org/10.3390/ijms21165618.

    Article  CAS  PubMed Central  Google Scholar 

  27. Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., and Laliberte, J. F. (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity, J. Virol., 74, 7730-7737, https://doi.org/10.1128/jvi.74.17.7730-7737.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadoeuf, J., et al. (2007) Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr2-3 resistance in pepper, Mol. Plant Microbe Interact., 19, 557-563, https://doi.org/10.1094/MPMI-19-0557.

    Article  CAS  Google Scholar 

  29. Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E., and Le Gall, O. (2007) Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro, J. Gen. Virol., 88, 1029-1033, https://doi.org/10.1099/vir.0.82501-0.

    Article  CAS  PubMed  Google Scholar 

  30. Okonechnikov, K., Golosova, O., and Fursov, M. (2012) Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 28, 1166-1167, https://doi.org/10.1093/bioinformatics/bts091.

    Article  CAS  PubMed  Google Scholar 

  31. Hughes, J. M., Ptushkina, M., Karim, M. M., Koloteva, N., von der Haar, T., and McCarthy, J. E. (1999) Translational repression by human 4E-BP1 in yeast specifically requires human eIF4E as target, J. Biol. Chem., 274, 3261-3264, https://doi.org/10.1074/jbc.274.6.3261.

    Article  CAS  PubMed  Google Scholar 

  32. Gietz, R., and Schiestl, R. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc., 2, 31-34, https://doi.org/10.1038/nprot.2007.13.

    Article  CAS  PubMed  Google Scholar 

  33. Aho, S., Arffman, A., Pummi, T., and Uitto, J. (1997) A novel reporter gene MEL1 for the yeast two-hybrid system, Anal. Biochem., 253, 270-272, https://doi.org/10.1006/abio.1997.2394.

    Article  CAS  PubMed  Google Scholar 

  34. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685.

    Article  CAS  Google Scholar 

  35. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 46, 296-303, https://doi.org/10.1093/nar/gky427.

    Article  CAS  Google Scholar 

  36. Emsley, P., Lohkamp, B., Scott, W., and Cowtan, K. (2010) Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486-501, https://doi.org/10.1107/S0907444910007493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krissinel, E., and Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallogr. D Biol. Crystallogr., 60, 2256-2268, https://doi.org/10.1107/S0907444904026460.

    Article  CAS  PubMed  Google Scholar 

  38. Miras, M., Truniger, V., Silva, C., Verdaguer, N., Aranda, M. A., and Querol-Audí, J. (2017) Structure of eIF4E in complex with an eIF4G peptide supports a Universal bipartite binding mode for protein translation, Plant Physiol., 174, 1476-1491, https://doi.org/10.1104/pp.17.00193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monzingo, A. F., Dhaliwal, S., Dutt-Chaudhuri, A., Lyon, A., Sadow, J. H., et al. (2007) The structure of eukaryotic translation initiation factor-4E from wheat reveals a novel disulfide bond, Plant Physiol., 143, 1504-1518, https://doi.org/10.1104/pp.106.093146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 435-447, https://doi.org/10.1021/ct700301q.

    Article  CAS  PubMed  Google Scholar 

  41. MacKerell, A. D. Jr., Feig, M., and Brooks, C. L. (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, J. Comput. Chem., 25, 1400-1415, https://doi.org/10.1002/jcc.20065.

    Article  CAS  PubMed  Google Scholar 

  42. Essmann, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., and Pedersen, L. (1995) A smooth particle mesh Ewald method, J. Chem. Physics, 103, 8577, https://doi.org/10.1063/1.470117.

    Article  CAS  Google Scholar 

  43. Altmann, M., Sonenberg, N., and Trachsel, H. (1989) Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell-free system, Mol. Cell. Biol., 10, 4467-4472, https://doi.org/10.1128/mcb.9.10.4467.

    Article  Google Scholar 

  44. Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., et al. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses, PLoS One, https://doi.org/10.1371/journal.pone.0011313.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moury, B., Lebaron, C., Szadkowski, M., Khalifa, M. B., Girardot, G., et al. (2020) Knock-out mutation of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to pepper veinal mottle virus in tomato, Virology, 539, 11-17, https://doi.org/10.1016/j.virol.2019.09.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. G. Kozlov (Kurchatov Institute Research Center) and I. I. Gubaidullin (Kurchatov Institute Research Center, Genetics Research Institute, Kurchatov Genomic Center) for valuable advice on yeast cultivation and to Dr. J.-L. Gallois (INRA) for kindly providing the yeast Jo55 strain for complementation analysis. The work was performed using the scientific equipment of the Center for Collective Use “Biotechnology” at the All-Russia Institute of Agricultural Biotechnology (Moscow, Russia; agreement RFMEFI62114×0003).

Funding

This research was supported by the Russian Foundation for Basic Research (project no. 17-29-08024 ofi_m). Western blot analysis was performed due to support of the State task no. AAAA-A19-119092390041-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Lebedeva.

Ethics declarations

The authors declare no conflict of interest. This article does not describe any research involving humans or animals as objects performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, M.V., Nikonova, E.Y., Terentiev, A.A. et al. VPg of Potato Virus Y and Potato Cap-Binding eIF4E Factors: Selective Interaction and Its Supposed Mechanism. Biochemistry Moscow 86, 1128–1138 (2021). https://doi.org/10.1134/S000629792109008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792109008X

Keywords

Navigation