Skip to main content
Log in

Little but Loud. The Diversity of Functions of Small Proteins and Peptides – Translational Products of Short Reading Frames

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell functioning is tightly regulated process. For many years, research in the fields of proteomics and functional genomics has been focused on the role of proteins in cell functioning. The advances in science have led to the uncovering that short open reading frames, previously considered non-functional, serve a variety of functions. Short reading frames in polycistronic mRNAs often regulate their stability and translational efficiency of the main reading frame. The improvement of proteomic analysis methods has made it possible to identify the products of translation of short open reading frames in quantities that suggest the existence of functional role of those peptides and short proteins. Studies demonstrating their role unravel a new level of the regulation of cell functioning and its adaptation to changing conditions. This review is devoted to the analysis of functions of recently discovered peptides and short proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ORF:

open reading frame

UTR:

untranslated region

References

  1. Numata, K., Kanai, A., Saito, R., Kondo, S., Adachi, J., et al. (2003) Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection, Genome Res., 13, 1301-1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs, Nature, 420, 563-573.

    Article  PubMed  Google Scholar 

  3. Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., et al. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution, Nature, 453, 1239-1243.

    Article  CAS  PubMed  Google Scholar 

  4. Ulitsky, I., and Bartel, D. P. (2013) lincRNAs: Genomics, evolution, and mechanisms, Cell, 154, 26-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kopp, F., and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs, Cell, 172, 393-407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218-223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao, X., Khitun, A., Na, Z., Dumitrescu, D. G., Kubica, M., et al. (2020) Comparative proteomic profiling of unannotated microproteins and alternative proteins in human cell lines, J. Proteome Res., 19, 3418-3426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, J., Ward, C. C., Jungreis, I., Slavoff, S. A., Schwaid, A. G., et al. (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue, J. Proteome Res., 13, 1757-1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slavoff, S. A., Mitchell, A. J., Schwaid, A. G., Cabili, M. N., Ma, J., et al. (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells, Nat. Chem. Biol., 9, 59-64.

    Article  CAS  PubMed  Google Scholar 

  10. Cardon, T., Hervé, F., Delcourt, V., Roucou, X., Salzet, M., et al. (2020) Optimized sample preparation workflow for improved identification of ghost proteins, Anal. Chem., 92, 1122-1129.

    Article  CAS  PubMed  Google Scholar 

  11. Cardon, T., Fournier, I., and Salzet, M. (2021) Shedding light on the ghost proteome, Trends Biochem. Sci., 46, 239-250.

    Article  CAS  PubMed  Google Scholar 

  12. Chugunova, A., Navalayeu, T., Dontsova, O., and Sergiev, P. (2018) Mining for small translated ORFs, J. Proteome Res., 17, 1-11.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J., Brunner, A.-D., Cogan, J. Z., Nuñez, J. K., et al. (2020) Pervasive functional translation of noncanonical human open reading frames, Science, 367, 1140-1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao, X., and Slavoff, S. A. (2020) Non-AUG start codons: expanding and regulating the small and alternative ORFeome, Exper. Cell Res., 391, 111973.

    Article  CAS  Google Scholar 

  15. Hinnebusch, A. G. (1997) Translational regulation of yeast GCN4, J. Biol. Chem., 272, 21661-21664.

    Article  CAS  PubMed  Google Scholar 

  16. Andreev, D. E., O’Connor, P. B., Fahey, C., Kenny, E. M., Terenin, I. M., et al. (2015) Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression, eLife, 4, e03971.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Michel, A. M., Andreev, D. E., and Baranov, P. V. (2014) Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning, BMC Bioinformatics, 15, 380.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chugunova, A., Loseva, E., Mazin, P., Mitina, A., Navalayeu, T., et al. (2019) LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism, Proc. Natl. Acad. Sci. USA, 116, 4940-4945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein, C. S., Jadiya, P., Zhang, X., McLendon, J. M., Abouassaly, G. M., et al. (2018) Mitoregulin: a lncRNA-encoded microprotein that supports Mitochondrial supercomplexes and respiratory efficiency, Cell Rep., 23, 3710-3720.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Makarewich, C. A., Baskin, K. K., Munir, A. Z., Bezprozvannaya, S., Sharma, G., et al. (2018) MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation, Cell Rep., 23, 3701-3709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu, Q., Martinez, T. F., Novak, S. W., Donaldson, C. J., Tan, D., et al. (2019) Regulation of the ER stress response by a mitochondrial microprotein, Nat. Commun., 10, 4883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jackson, R., Kroehling, L., Khitun, A., Bailis, W., Jarret, A., et al. (2018) The translation of non-canonical open reading frames controls mucosal immunity, Nature, 564, 434-438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anderson, D. M., Anderson, K. M., Chang, C.-L., Makarewich, C. A., Nelson, B. R., et al. (2015) A micropeptide encoded by a putative long noncoding rna regulates muscle performance, Cell, 160, 595-606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., et al. (2017) mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 541, 228-232.

    Article  CAS  PubMed  Google Scholar 

  25. Rubtsova, M., Naraykina, Y., Vasilkova, D., Meerson, M., Zvereva, M., et al. (2018) Protein encoded in human telomerase RNA is involved in cell protective pathways, Nucleic Acids Res., 46, 8966-8977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto, Y., Niikura, T., Tajima, H., Yasukawa, T., Sudo, H., et al. (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and A, Proc. Natl. Acad. Sci. USA, 98, 6336-6341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tenson, T., DeBlasio, A., and Mankin, A. (1996) A functional peptide encoded in the Escherichia coli 23S rRNA, Proc. Natl. Acad. Sci. USA, 93, 5641-5646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, X., Bam, M., Becker, W., Nagarkatti, P. S., and Nagarkatti, M. (2020) Long noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression through histone demethylation, J. Immunol., 205, 987-993.

    Article  CAS  PubMed  Google Scholar 

  29. Spencer, H. L., Sanders, R., Boulberdaa, M., Meloni, M., Cochrane, A., et al. (2020) The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function, Cardiovasc. Res., 116, 1981-1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, M., Huang, N., Yang, X., Luo, J., Yan, S., et al. (2018) A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis, Oncogene, 37, 1805-1814.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, M., Zhao, K., Xu, X., Yang, Y., Yan, S., et al. (2018) A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma, Nat. Commun., 9, 4475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yin, H., Shen, X., Zhao, J., Cao, X., He, H., et al. (2020) Circular RNA CircFAM188B encodes a protein that regulates proliferation and differentiation of chicken skeletal muscle satellite cells, Front. Cell Dev. Biol., 8, 522588.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, J., Zhu, S., Meng, N., He, Y., Lu, R., and Yan, G.-R. (2019) ncRNA-encoded peptides or proteins and cancer, Mol. Ther., 27, 1718-1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, J., Morsalin, S., Rao, V. N., and Reddy, E. S. P. (2017) Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells, J. Pharmaceut. Sci. Pharmacol., 3, 23-27.

    Article  Google Scholar 

  35. Shi, Y., Jia, X., and Xu, J. (2020) The new function of circRNA: translation, Clin. Transl. Oncol., 22, 2162-2169.

    Article  CAS  PubMed  Google Scholar 

  36. Vanderperre, B., Lucier, J.-F., Bissonnette, C., Motard, J., Tremblay, G., et al. (2013) Direct detection of alternative open reading frames translation products in human significantly expands the proteome, PLoS One, 8, e70698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y., Woods, N. T., Kim, D., Sweet, M., Monteiro, A. N. A., and Karchin, R. (2011) Yeast two-hybrid junk sequences contain selected linear motifs, Nucleic Acids Res., 39, e128-e128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arnoult, N., Correia, A., Ma, J., Merlo, A., Garcia-Gomez, S., et al. (2017) Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN, Nature, 549, 548-552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Agarwal, S., Harada, J., Schreifels, J., Lech, P., Nikolai, B., et al. (2006) Isolation, characterization, and genetic complementation of a cellular mutant resistant to retroviral infection, Proc. Natl. Acad. Sci. USA, 103, 15933-15938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hung, P. J., Johnson, B., Chen, B.-R., Byrum, A. K., Bredemeyer, A. L., et al. (2018) MRI is a DNA damage response adaptor during classical non-homologous end joining, Mol. Cell, 71, 332-342.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanyu-Nakamura, K., Sonobe-Nojima, H., Tanigawa, A., Lasko, P., and Nakamura, A. (2008) Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells, Nature, 451, 730-733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou, L., Wang, Y., Liu, Y., Zhang, N., Shamovsky, I., et al. (2019) Paf1C regulates RNA polymerase II progression by modulating elongation rate, Proc. Natl. Acad. Sci. USA, 116, 14583-14592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, Y., Gao, X., Zhang, M., Yan, S., Sun, C., et al. (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis, JNCI: J. Natl. Cancer Institute, 110, 304-315.

    Article  CAS  Google Scholar 

  44. Cardon, T., Franck, J., Coyaud, E., Laurent, E. M. N., Damato, M., et al. (2020) Alternative proteins are functional regulators in cell reprogramming by PKA activation, Nucleic Acids Res., 48, 7864-7882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, J.-Z., Chen, M., Chen, D., Gao, X.-C., Zhu, S., et al. (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth, Mol. Cell, 68, 171-184.e6.

    Article  CAS  PubMed  Google Scholar 

  46. Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., et al. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature, 452, 230-233.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, M., Zhang, J., and Manley, J. L. (2010) Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA, Cancer Res., 70, 8977-8980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Palmer, C. S., Osellame, L. D., Laine, D., Koutsopoulos, O. S., Frazier, A. E., and Ryan, M. T. (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery, EMBO Rep., 12, 565-573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rathore, A., Chu, Q., Tan, D., Martinez, T. F., Donaldson, C. J., et al. (2018) MIEF1 microprotein regulates mitochondrial translation, Biochemistry, 57, 5564-5575.

    Article  CAS  PubMed  Google Scholar 

  50. Delcourt, V., Brunelle, M., Roy, A. V., Jacques, J.-F., Salzet, M., et al. (2018) The protein coded by a short open reading frame, not by the annotated coding sequence, is the main gene product of the dual-coding gene MIEF1, Mol. Cell. Proteomics, 17, 2402-2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, A., Rathore, S., Kimanius, D., Aibara, S., Bai, X., et al. (2017) Structures of the human mitochondrial ribosome in native states of assembly, Nat. Struct. Mol. Biol., 24, 866-869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cardon, T., Salzet, M., Franck, J., and Fournier, I. (2019) Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation, Biochim. Biophys. Acta Gen. Subjects, 1863, 1458-1470.

    Article  CAS  Google Scholar 

  53. D’Lima, N. G., Ma, J., Winkler, L., Chu, Q., Loh, K. H., et al. (2017) A human microprotein that interacts with the mRNA decapping complex, Nat. Chem. Biol., 13, 174-180.

    Article  PubMed  CAS  Google Scholar 

  54. Cloutier, P., Poitras, C., Faubert, D., Bouchard, A., Blanchette, M., et al. (2020) Upstream ORF-encoded ASDURF is a novel prefoldin-like subunit of the PAQosome, J. Proteome Res., 19, 18-27.

    Article  CAS  PubMed  Google Scholar 

  55. Polycarpou-Schwarz, M., Groß, M., Mestdagh, P., Schott, J., Grund, S. E., et al. (2018) The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation, Oncogene, 37, 4750-4768.

    Article  CAS  PubMed  Google Scholar 

  56. Kranias, E. G., and Hajjar, R. J. (2012) Modulation of cardiac contractility by the phopholamban/SERCA2a regulatome, Circ. Res., 110, 1646-1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. MacLennan, D. H., and Kranias, E. G. (2003) Phospholamban: a crucial regulator of cardiac contractility, Nat. Rev. Mol. Cell Biol., 4, 566-577.

    Article  CAS  PubMed  Google Scholar 

  58. Tupling, A. R., Bombardier, E., Gupta, S. C., Hussain, D., Vigna, C., et al. (2011) Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice, Am. J. Physiol. Cell Physiol., 301, C841-C849.

    Article  CAS  PubMed  Google Scholar 

  59. Gorski, P. A., Ceholski, D. K., and Young, H. S. (2017) Structure-function relationship of the SERCA Pump and its regulation by phospholamban and sarcolipin, in Membrane Dynamics and Calcium Signaling, vol. 981, Springer International Publishing, Cham, pp. 77-119.

  60. Bal, N. C., and Periasamy, M. (2020) Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis, Phil. Trans. R. Soc. B, 375, 20190135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hazafa, A., Batool, A., Ahmad, S., Amjad, M., Chaudhry, S. N., et al. (2021) Humanin: a mitochondrial-derived peptide in the treatment of apoptosis-related diseases, Life Sci., 264, 118679.

    Article  CAS  PubMed  Google Scholar 

  62. Calvo, S. E., Clauser, K. R., and Mootha, V. K. (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins, Nucleic Acids Res., 44, D1251-D1257.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, S., Reljić, B., Liang, C., Kerouanton, B., Francisco, J. C., et al. (2020) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly, Nat. Commun., 11, 1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, Y.-F., Xiao, M.-H., Chen, H.-X., Meng, Y., Zhao, N., et al. (2019) A novel mitochondrial micropeptide MPM enhances mitochondrial respiratory activity and promotes myogenic differentiation, Cell Death Dis., 10, 528, https://doi.org/10.1038/s41419-019-1767-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, L., Fan, J., Han, L., Qi, H., Wang, Y., et al. (2020) The micropeptide LEMP plays an evolutionarily conserved role in myogenesis, Cell Death Dis., 11, 357, https://doi.org/10.1038/s41419-020-2570-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friesen, M., Warren, C. R., Yu, H., Toyohara, T., Ding, Q., et al. (2020) Mitoregulin controls β-oxidation in human and mouse adipocytes, Stem Cell Rep., 14, 590-602.

    Article  CAS  Google Scholar 

  67. Liu, G. Y., and Sabatini, D. M. (2020) mTOR at the nexus of nutrition, growth, ageing and disease, Nat. Rev. Mol. Cell Biol., 21, 183-203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rubtsova, M. P., Vasilkova, D. P., Moshareva, M. A., Malyavko, A. N., Meerson, M. B., et al. (2019) Integrator is a key component of human telomerase RNA biogenesis, Sci. Rep., 9, 1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferrara-Romeo, I., Martinez, P., Saraswati, S., Whittemore, K., Graña-Castro, O., et al. (2020) The mTOR pathway is necessary for survival of mice with short telomeres, Nat. Commun., 11, 1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21‑64‑00006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr V. Sergiev or Maria P. Rubtsova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergiev, P.V., Rubtsova, M.P. Little but Loud. The Diversity of Functions of Small Proteins and Peptides – Translational Products of Short Reading Frames. Biochemistry Moscow 86, 1139–1150 (2021). https://doi.org/10.1134/S0006297921090091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921090091

Keywords

Navigation