Skip to main content
Log in

Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ribosome profiling (riboseq) has opened the possibilities for the genome-wide studies of translation in all living organisms. This method is based on deep sequencing of mRNA fragments protected by the ribosomes from hydrolysis by ribonucleases, the so-called ribosomal footprints (RFPs). Ribosomal profiling together with RNA sequencing allows not only to identify with a reasonable accuracy translated reading frames in the transcriptome, but also to track changes in gene expression in response to various stimuli. Notably, ribosomal profiling in its classical version has certain limitations. The size of the selected mRNA fragments is 25-35 nts, while RFPs of other sizes are usually omitted from analysis. Also, ribosomal profiling “averages” the data from all ribosomes and does not allow to study specific ribosomal complexes associated with particular translation factors. However, recently developed modifications of ribosomal profiling provide answers to a number of questions. Thus, it has become possible to analyze not only elongating, but also scanning and reinitiating ribosomes, to study events associated with the collision of ribosomes during mRNA translation, to discover new ways of cotranslational assembly of multisubunit protein complexes during translation, and to selectively isolate ribosomal complexes associated with certain protein factors. New data obtained using these modified approaches provide a better understanding of the mechanisms of translation regulation and the functional roles of translational apparatus components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AMP-PNP:

non-hydrolysable analogue of ATP

eIF:

eukaryotic initiation factor

ORF:

open reading frame

PIC:

preinitiation complex

RFP:

ribosomal footprint

RSC:

ribosomal scanning complex

RQC:

quality control on translating ribosomes

UTR:

untranslated region

References

  1. Castles, J. J., and Singer, M. F. (1969) Degradation of polyuridylic acid by ribonuclease II: protection by ribosomes, J. Mol. Biol., 40, 1-17, https://doi.org/10.1016/0022-2836(69)90292-7.

    Article  CAS  PubMed  Google Scholar 

  2. Wolin, S. L., and Walter, P. (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA, EMBO J., 7, 3559-3569.

    Article  CAS  Google Scholar 

  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218-223, https://doi.org/10.1126/science.1168978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M., and Weissman, J. S. (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments, Nat. Prot., 7, 1534-1550, https://doi.org/10.1038/nprot.2012.086.

    Article  CAS  Google Scholar 

  5. Lee, S., Liu, B., Lee, S., Huang, S. X., Shen, B., and Qian, S. B. (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution, Proc. Natl. Acad. Sci. USA, 109, E2424-2432, https://doi.org/10.1073/pnas.1207846109.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789-802, https://doi.org/10.1016/j.cell.2011.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, C. C., Zinshteyn, B., Wehner, K. A., and Green, R. (2019) High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress, Mol. Cell, 73, 959-970.e955, https://doi.org/10.1016/j.molcel.2018.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lareau, L. F., Hite, D. H., Hogan, G. J., and Brown, P. O. (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments, eLife, 3, e01257, https://doi.org/10.7554/eLife.01257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ingolia, N. T., Hussmann, J. A., and Weissman, J. S. (2019) Ribosome profiling: global views of translation, Cold Spring Harb. Perspect. Biol., 11, a032698, https://doi.org/10.1101/cshperspect.a032698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brar, G. A., and Weissman, J. S. (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis, Nat. Rev. Mol. Cell Biol., 16, 651-664, https://doi.org/10.1038/nrm4069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiniry, S. J., Michel, A. M., and Baranov, P. V. (2020) Computational methods for ribosome profiling data analysis, Wiley Interdiscip. Rev. RNA, 11, e1577, https://doi.org/10.1002/wrna.1577.

    Article  CAS  PubMed  Google Scholar 

  12. Ingolia, N. T. (2014) Ribosome profiling: new views of translation, from single codons to genome scale, Nat. Rev. Genet., 15, 205-213, https://doi.org/10.1038/nrg3645.

    Article  CAS  PubMed  Google Scholar 

  13. Andreev, D. E., O’Connor, P. B., Loughran, G., Dmitriev, S. E., Baranov, P. V., and Shatsky, I. N. (2017) Insights into the mechanisms of eukaryotic translation gained with ribosome profiling, Nucleic Acids Res., 45, 513-526, https://doi.org/10.1093/nar/gkw1190.

    Article  CAS  PubMed  Google Scholar 

  14. Calviello, L., and Ohler, U. (2017) Beyond read-counts: Ribo-seq data analysis to understand the functions of the transcriptome, Trends Genet., 33, 728-744, https://doi.org/10.1016/j.tig.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  15. Michel, A. M., and Baranov, P. V. (2013) Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale, Wiley Interdiscip. Rev. RNA, 4, 473-490, https://doi.org/10.1002/wrna.1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozak, M. (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell, 15, 1109-1123, https://doi.org/10.1016/0092-8674(78)90039-9.

    Article  CAS  PubMed  Google Scholar 

  17. Kozak, M. (1980) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes, Cell, 22, 7-8, https://doi.org/10.1016/0092-8674(80)90148-8.

    Article  CAS  PubMed  Google Scholar 

  18. Hinnebusch, A. G. (2014) The scanning mechanism of eukaryotic translation initiation, Annu. Rev. Biochem., 83, 779-812, https://doi.org/10.1146/annurev-biochem-060713-035802.

    Article  CAS  PubMed  Google Scholar 

  19. Hinnebusch, A. G. (2017) Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation, Trends Biochem. Sci., 42, 589-611, https://doi.org/10.1016/j.tibs.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  20. Tahmasebi, S., Sonenberg, N., Hershey, J. W. B., and Mathews, M. B. (2019) Protein synthesis and translational control: a historical perspective, Cold Spring Harb. Perspect. Biol., 11, a035584, https://doi.org/10.1101/cshperspect.a035584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hershey, J. W. B., Sonenberg, N., and Mathews, M. B. (2019) Principles of translational control, Cold Spring Harb. Perspect. Biol., 11, a032607, https://doi.org/10.1101/cshperspect.a032607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hinnebusch, A. G., Ivanov, I. P., and Sonenberg, N. (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs, Science, 352, 1413-1416, https://doi.org/10.1126/science.aad9868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valasek, L., Szamecz, B., Hinnebusch, A. G., and Nielsen, K. H. (2007) In vivo stabilization of preinitiation complexes by formaldehyde cross-linking, Methods Enzymol., 429, 163-183, https://doi.org/10.1016/S0076-6879(07)29008-1.

    Article  CAS  PubMed  Google Scholar 

  24. Archer, S. K., Shirokikh, N. E., Beilharz, T. H., and Preiss, T. (2016) Dynamics of ribosome scanning and recycling revealed by translation complex profiling, Nature, 535, 570-574, https://doi.org/10.1038/nature18647.

    Article  CAS  PubMed  Google Scholar 

  25. Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U., and Pestova, T. V. (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes, EMBO J., 27, 1609-1621, https://doi.org/10.1038/emboj.2008.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozak, M. (1977) Nucleotide sequences of 5′-terminal ribosome-protected initiation regions from two reovirus messages, Nature, 269, 391-394, https://doi.org/10.1038/269390a0.

    Article  CAS  PubMed  Google Scholar 

  27. Lazarowitz, S. G., and Robertson, H. D. (1977) Initiator regions from the small size class of reovirus messenger RNA protected by rabbit reticulocyte ribosomes, J. Biol. Chem., 252, 7842-7849, https://doi.org/10.1016/S0021-9258(17)41043-X.

    Article  CAS  PubMed  Google Scholar 

  28. Bohlen, J., Fenzl, K., Kramer, G., Bukau, B., and Teleman, A. A. (2020) Selective 40S footprinting reveals cap-tethered ribosome scanning in human cells, Mol. Cell, 79, 561-574.e565, https://doi.org/10.1016/j.molcel.2020.06.005.

    Article  CAS  PubMed  Google Scholar 

  29. Wagner, S., Herrmannova, A., Hronova, V., Gunisova, S., Sen, N. D., et al. (2020) Selective translation complex profiling reveals staged initiation and co-translational assembly of initiation factor complexes, Mol. Cell, 79, 546-560.e547, https://doi.org/10.1016/j.molcel.2020.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giess, A., Torres Cleuren, Y. N., Tjeldnes, H., Krause, M., Bizuayehu, T. T., et al. (2020) Profiling of small ribosomal subunits reveals modes and regulation of translation initiation, Cell Rep., 31, 107534, https://doi.org/10.1016/j.celrep.2020.107534.

    Article  CAS  PubMed  Google Scholar 

  31. Elfakess, R., Sinvani, H., Haimov, O., Svitkin, Y., Sonenberg, N., and Dikstein, R. (2011) Unique translation initiation of mRNAs-containing TISU element, Nucleic Acids Res., 39, 7598-7609, https://doi.org/10.1093/nar/gkr484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, P., Hellen, C. U., and Pestova, T. V. (2016) Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs, Genes Dev., 30, 1573-1588, https://doi.org/10.1101/gad.282418.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyuhas, O., and Kahan, T. (2015) The race to decipher the top secrets of TOP mRNAs, Biochim. Biophys. Acta, 1849, 801-811, https://doi.org/10.1016/j.bbagrm.2014.08.015.

    Article  CAS  PubMed  Google Scholar 

  34. Tamarkin-Ben-Harush, A., Vasseur, J. J., Debart, F., Ulitsky, I., and Dikstein, R. (2017) Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress, eLife, 6, e21907, https://doi.org/10.7554/eLife.21907.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shatsky, I. N., Terenin, I. M., Smirnova, V. V., and Andreev, D. E. (2018) Cap-independent translation: what’s in a name? Trends Biochem. Sci., 43, 882-895, https://doi.org/10.1016/j.tibs.2018.04.011.

    Article  CAS  PubMed  Google Scholar 

  36. Oh, E., Becker, A. H., Sandikci, A., Huber, D., Chaba, R., et al. (2011) Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo, Cell, 147, 1295-1308, https://doi.org/10.1016/j.cell.2011.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, Y., Li, F., Huang, L., Polte, C., Duan, H., Fang, J., et al. (2020) eIF3 associates with 80S ribosomes to promote translation elongation, mitochondrial homeostasis, and muscle health, Mol. Cell, 79, 575-587.e577, https://doi.org/10.1016/j.molcel.2020.06.003.

    Article  CAS  PubMed  Google Scholar 

  38. Hashem, Y., des Georges, A., Dhote, V., Langlois, R., Liao, H. Y., et al. (2013) Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29, Cell, 153, 1108-1119, https://doi.org/10.1016/j.cell.2013.04.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Des Georges, A., Dhote, V., Kuhn, L., Hellen, C. U., Pestova, T. V., et al. (2015) Structure of mammalian eIF3 in the context of the 43S preinitiation complex, Nature, 525, 491-495, https://doi.org/10.1038/nature14891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eliseev, B., Yeramala, L., Leitner, A., Karuppasamy, M., Raimondeau, E., et al. (2018) Structure of a human cap-dependent 48S translation pre-initiation complex, Nucleic Acids Res., 46, 2678-2689, https://doi.org/10.1093/nar/gky054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brito Querido, J., Sokabe, M., Kraatz, S., Gordiyenko, Y., Skehel, J. M., et al. (2020) Structure of a human 48S translational initiation complex, Science, 369, 1220-1227, https://doi.org/10.1126/science.aba4904.

    Article  CAS  PubMed  Google Scholar 

  42. Valasek, L. S., Zeman, J., Wagner, S., Beznoskova, P., Pavlikova, Z., et al. (2017) Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle, Nucleic Acids Res., 45, 10948-10968, https://doi.org/10.1093/nar/gkx805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mohammad, M. P., Munzarova Pondelickova, V., Zeman, J., Gunisova, S., and Valasek, L. S. (2017) In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation, Nucleic Acids Res., 45, 2658-2674, https://doi.org/10.1093/nar/gkx049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benitez-Cantos, M. S., Yordanova, M. M., O’Connor, P. B. F., Zhdanov, A. V., Kovalchuk, S. I., et al. (2020) Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context, Genome Res., 30, 974-984, https://doi.org/10.1101/gr.257352.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fresno, M., Jimenez, A., and Vazquez, D. (1977) Inhibition of translation in eukaryotic systems by harringtonine, Eur. J. Biochem., 72, 323-330, https://doi.org/10.1111/j.1432-1033.1977.tb11256.x.

    Article  CAS  PubMed  Google Scholar 

  46. Shirokikh, N. E., Dutikova, Y. S., Staroverova, M. A., Hannan, R. D., and Preiss, T. (2019) Migration of small ribosomal subunits on the 5′-untranslated regions of capped messenger RNA, Int. J. Mol. Sci., 20, 4464, https://doi.org/10.3390/ijms20184464.

    Article  CAS  PubMed Central  Google Scholar 

  47. Doring, K., Ahmed, N., Riemer, T., Suresh, H. G., Vainshtein, Y., et al. (2017) Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding, Cell, 170, 298-311.e220, https://doi.org/10.1016/j.cell.2017.06.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le Tallec, B., Barrault, M. B., Courbeyrette, R., Guerois, R., Marsolier-Kergoat, M. C., and Peyroche, A. (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals, Mol. Cell, 27, 660-674, https://doi.org/10.1016/j.molcel.2007.06.025.

    Article  CAS  PubMed  Google Scholar 

  49. Rosenzweig, R., and Glickman, M. H. (2008) Chaperone-driven proteasome assembly, Biochem. Soc. Trans., 36, 807-812, https://doi.org/10.1042/BST0360807.

    Article  CAS  PubMed  Google Scholar 

  50. Shiber, A., Doring, K., Friedrich, U., Klann, K., Merker, D., et al. (2018) Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling, Nature, 561, 268-272, https://doi.org/10.1038/s41586-018-0462-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamenova, I., Mukherjee, P., Conic, S., Mueller, F., El-Saafin, F., et al. (2019) Co-translational assembly of mammalian nuclear multisubunit complexes, Nat. Commun., 10, 1740, https://doi.org/10.1038/s41467-019-09749-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guydosh, N. R., and Green, R. (2014) Dom34 rescues ribosomes in 3′-untranslated regions, Cell, 156, 950-962, https://doi.org/10.1016/j.cell.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han, P., Shichino, Y., Schneider-Poetsch, T., Mito, M., Hashimoto, S., et al. (2020) Genome-wide survey of ribosome collision, Cell Rep., 31, 107610, https://doi.org/10.1016/j.celrep.2020.107610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown, A., Shao, S., Murray, J., Hegde, R. S., and Ramakrishnan, V. (2015) Structural basis for stop codon recognition in eukaryotes, Nature, 524, 493-496, https://doi.org/10.1038/nature14896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCaughan, K. K., Brown, C. M., Dalphin, M. E., Berry, M. J., and Tate, W. P. (1995) Translational termination efficiency in mammals is influenced by the base following the stop codon, Proc. Natl. Acad. Sci. USA, 92, 5431-5435, https://doi.org/10.1073/pnas.92.12.5431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, T., Chen, Y. M., Li, Y., Wang, J., Chen, S., et al. (2021) Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding, Genome Biol., 22, 16, https://doi.org/10.1186/s13059-020-02256-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arpat, A. B., Liechti, A., De Matos, M., Dreos, R., Janich, P., and Gatfield, D. (2020) Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing, Genome Res., 30, 985-999, https://doi.org/10.1101/gr.257741.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joazeiro, C. A. P. (2019) Mechanisms and functions of ribosome-associated protein quality control, Nat. Rev. Mol. Cell Biol., 20, 368-383, https://doi.org/10.1038/s41580-019-0118-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ikeuchi, K., Izawa, T., and Inada, T. (2018) Recent progress on the molecular mechanism of quality controls induced by ribosome stalling, Front. Genet., 9, 743, https://doi.org/10.3389/fgene.2018.00743.

    Article  CAS  PubMed  Google Scholar 

  60. Joazeiro, C. A. P. (2017) Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control, Annu. Rev. Cell Dev. Biol., 33, 343-368, https://doi.org/10.1146/annurev-cellbio-111315-125249.

    Article  CAS  PubMed  Google Scholar 

  61. Defenouillere, Q., and Fromont-Racine, M. (2017) The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance, Curr. Genet., 63, 997-1005, https://doi.org/10.1007/s00294-017-0708-5.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, C. C., Peterson, A., Zinshteyn, B., Regot, S., and Green, R. (2020) Ribosome collisions trigger general stress responses to regulate cell fate, Cell, 182, 404-416.e414, https://doi.org/10.1016/j.cell.2020.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pochopien, A. A., Beckert, B., Kasvandik, S., Berninghausen, O., Beckmann, R., et al. (2021) Structure of Gcn1 bound to stalled and colliding 80S ribosomes, Proc. Natl. Acad. Sci. USA, 118, e2022756118, https://doi.org/10.1073/pnas.2022756118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meydan, S., and Guydosh, N. R. (2020) Disome and Trisome profiling reveal genome-wide targets of ribosome quality control, Mol. Cell, 79, 588-602.e586, https://doi.org/10.1016/j.molcel.2020.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tuck, A. C., Rankova, A., Arpat, A. B., Liechti, L. A., Hess, D., et al. (2020) Mammalian RNA decay pathways are highly specialized and widely linked to translation, Mol. Cell, 77, 1222-1236.e1213, https://doi.org/10.1016/j.molcel.2020.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Young, D. J., Makeeva, D. S., Zhang, F., Anisimova, A. S., Stolboushkina, E. A., et al. (2018) Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR recycle post-termination 40S subunits in vivo, Mol. Cell, 71, 761-774.e765, https://doi.org/10.1016/j.molcel.2018.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaikwad, S., Ghobakhlou, F., Young, D. J., Visweswaraiah, J., Zhang, H., and Hinnebusch, A. G. (2021) Reprogramming of translation in yeast cells impaired for ribosome recycling favors short, efficiently translated mRNAs, eLife, 10, e64283, https://doi.org/10.7554/eLife.64283.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Castelo-Szekely, V., De Matos, M., Tusup, M., Pascolo, S., Ule, J., and Gatfield, D. (2019) Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via clock, Nucleic Acids Res., 47, 5193-5209, https://doi.org/10.1093/nar/gkz261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuller, A. P., Wu, C. C., Dever, T. E., Buskirk, A. R., and Green, R. (2017) eIF5A functions globally in translation elongation and termination, Mol. Cell, 66, 194-205.e195, https://doi.org/10.1016/j.molcel.2017.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kasari, V., Margus, T., Atkinson, G. C., Johansson, M. J. O., and Hauryliuk, V. (2019) Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae, Sci. Rep., 9, 3037, https://doi.org/10.1038/s41598-019-39403-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, F., Zhang, H., Kulkarni, S. D., Lorsch, J. R., and Hinnebusch, A. G. (2020) eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide, RNA, 26, 419-438, https://doi.org/10.1261/rna.073536.119.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fijalkowska, D., Verbruggen, S., Ndah, E., Jonckheere, V., Menschaert, G., and Van Damme, P. (2017) eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs, Nucleic Acids Res., 45, 7997-8013, https://doi.org/10.1093/nar/gkx469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sen, N. D., Zhou, F., Harris, M. S., Ingolia, N. T., and Hinnebusch, A. G. (2016) eIF4B stimulates translation of long mRNAs with structured 5′-UTRs and low closed-loop potential but weak dependence on eIF4G, Proc. Natl. Acad. Sci. USA, 113, 10464-10472, https://doi.org/10.1073/pnas.1612398113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Young, D. J., Guydosh, N. R., Zhang, F., Hinnebusch, A. G., and Green, R. (2015) Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′-UTRs in vivo, Cell, 162, 872-884, https://doi.org/10.1016/j.cell.2015.07.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang, L., Morris, J., Wan, J., Moore, C., Fujita, Y., et al. (2017) Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide, Nucleic Acids Res., 45, 11941-11953, https://doi.org/10.1093/nar/gkx808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sugiyama, H., Takahashi, K., Yamamoto, T., Iwasaki, M., Narita, M., et al. (2017) Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells, Proc. Natl. Acad. Sci. USA, 114, 340-345, https://doi.org/10.1073/pnas.1617234114.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan N. Shatsky.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.E., Smirnova, V.V. & Shatsky, I.N. Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. Biochemistry Moscow 86, 1095–1106 (2021). https://doi.org/10.1134/S0006297921090054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921090054

Keywords

Navigation