Skip to main content

Advertisement

Log in

LncRNA MIAT Inhibits MPP+-Induced Neuronal Damage Through Regulating the miR-132/SIRT1 Axis in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is an age-related neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. LncRNA MIAT has been shown to be critical in Alzheimer's disease, but its role and mechanism in PD are still unknown. Differentiated PC12 cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to establish in vitro cell injury model of PD. MTT, Annexin V-PI double staining test and Western blot were used to detect cell viability and apoptosis. Reactive oxygen species (ROS), superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (GSH-PX) kits were used to evaluate oxidative stress in cells. These results showed that LncRNA MIAT was down-regulated in MPP+-induced PC12 cells. Overexpression of LncRNA MIAT remarkably increased cell viability, inhibited cell apoptosis and oxidative stress in MPP+-treated cells. In addition, we proved that miR-132 is a target of LncRNA MIAT. Overexpression of miR-132 could reverse the positive effect of LncRNA MIAT overexpression on MPP+-induced cell oxidative stress injury. SIRT1 is a target of miR-132 and silencing of SIRT1 attunated the positive effect of LncRNA MIAT overexpression on oxidative stress injury in MPP+-induced PC12 cells. In conclusion, this study indicated that LncRNA MIAT suppressed MPP+-induced oxidative stress injury by regulating miR-132/SIRT1 axis in PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets for this study are included in the manuscript/supplementary files.

References

  1. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468(7324):696–700. https://doi.org/10.1038/nature09536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet (London, England) 363(9423):1783–1793. https://doi.org/10.1016/s0140-6736(04)16305-8

    Article  CAS  Google Scholar 

  3. Chong CM, Zhou ZY, Razmovski-Naumovski V, Cui GZ, Zhang LQ, Sa F, Hoi PM, Chan K, Lee SM (2013) Danshensu protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Neurosci Lett 543:121–125. https://doi.org/10.1016/j.neulet.2013.02.069

    Article  CAS  PubMed  Google Scholar 

  4. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18(20):8126–8132. https://doi.org/10.1523/jneurosci.18-20-08126.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PloS One 8(1):e54222. https://doi.org/10.1371/journal.pone.0054222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  7. Lalevée S, Feil R (2015) Long noncoding RNAs in human disease: emerging mechanisms and therapeutic strategies. Epigenomics 7(6):877–879. https://doi.org/10.2217/epi.15.55

    Article  CAS  PubMed  Google Scholar 

  8. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. https://doi.org/10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35. https://doi.org/10.1016/j.brainres.2010.03.110

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Q, Shan K, Qun-Wang X, Zhou RM, Yang H, Liu C, Li YJ, Yao J, Li XM, Shen Y, Cheng H, Yuan J, Zhang YY, Yan B (2016) Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget 7(31):49688–49698. https://doi.org/10.18632/oncotarget.10434

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bountali A, Tonge DP, Mourtada-Maarabouni M (2019) RNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fate. Int J Biol Macromol 130:878–891. https://doi.org/10.1016/j.ijbiomac.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu CX, Tang YC, Wu H (2019) LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle 18(2):156–166. https://doi.org/10.1080/15384101.2018.1560202

    Article  CAS  PubMed  Google Scholar 

  13. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y, Yuan W, Fan C (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770. https://doi.org/10.3389/fphar.2017.00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Z, Li T, Li S, Wei M, Qi H, Shen B (2019) Altered expression levels of MicroRNA-132 and Nurr1 in peripheral blood of parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 10(5):2243–2249. https://doi.org/10.1021/acschemneuro.8b00460

    Article  CAS  PubMed  Google Scholar 

  15. Liu DY, Zhang L (2019) MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer’s disease. Eur Rev Med Pharmacol Sci 23(19):8523–8532. https://doi.org/10.26355/eurrev_201910_19166

    Article  PubMed  Google Scholar 

  16. Zhao J, Yang M, Li Q, Pei X, Zhu X (2020) miR-132-5p regulates apoptosis and autophagy in MPTP model of Parkinson’s disease by targeting ULK1. Neuroreport 31(13):959–965. https://doi.org/10.1097/wnr.0000000000001494

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Li KS, Liu L, Li SL (2020) MicroRNA-132 promotes oxidative stress-induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury. Int J Mol Med 45(6):1942–1950. https://doi.org/10.3892/ijmm.2020.4557

    Article  CAS  PubMed  Google Scholar 

  18. Xiong Y, Shi L, Wang L, Zhou Z, Wang C, Lin Y, Luo D, Qiu J, Chen D (2017) Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharmacol Res 123:73–82. https://doi.org/10.1016/j.phrs.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, Vallée M, Planel E, Droit A, Calon F, Cicchetti F, Hébert SS (2016) microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953. https://doi.org/10.1038/srep30953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, Tang Q, Liu Y, Wang Q, Zhou M, Sheng F, Li G, Zhang R (2019) ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp Mol Med 51(10):1–13. https://doi.org/10.1038/s12276-019-0318-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS, Nayler SP, Nones K, Hu J, Bredy TW, Nakagawa S, Rigo F, Taft RJ, Cairns MJ, Blackshaw S, Wolvetang EJ, Mattick JS (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19(4):486–494. https://doi.org/10.1038/mp.2013.45

    Article  CAS  PubMed  Google Scholar 

  22. Ou GY, Lin WW, Zhao WJ (2021) Construction of long noncoding RNA-associated ceRNA networks reveals potential biomarkers in alzheimer’s disease. J Alzheimer’s Dis 82(1):169–183. https://doi.org/10.3233/jad-210068

    Article  CAS  Google Scholar 

  23. Li D, Yang T, Shao C, Cao Z, Zhang H (2021) LncRNA MIAT activates vascular endothelial growth factor A through RAD21 to promote nerve injury repair in acute spinal cord injury. Mol Cell Endocrinol 528:111244. https://doi.org/10.1016/j.mce.2021.111244

    Article  CAS  PubMed  Google Scholar 

  24. Singh NA, Mandal AK, Khan ZA (2016) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15(1):60. https://doi.org/10.1186/s12937-016-0179-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai LJ, Tu L, Li T, Yang XL, Ren YP, Gu R, Zhang Q, Yao H, Qu X, Wang Q, Tian JY (2020) Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease by inhibiting SP1. Aging (Albany NY) 12(1):672–689. https://doi.org/10.18632/aging.102649

    Article  CAS  Google Scholar 

  26. Yang Y, Kong F, Ding Q, Cai Y, Hao Y, Tang B (2020) Bruceine D elevates Nrf2 activation to restrain Parkinson’s disease in mice through suppressing oxidative stress and inflammatory response. Biochem Biophys Res Commun 526(4):1013–1020. https://doi.org/10.1016/j.bbrc.2020.03.097

    Article  CAS  PubMed  Google Scholar 

  27. Li WW, Cao AH, Sun FY (2020) LncRNA MIAT stimulates oxidative stress in the hypoxic pulmonary hypertension model by sponging miR-29a-5p and inhibiting Nrf2 pathway. Eur Rev Med Pharmacol Sci 24(17):9022–9029. https://doi.org/10.26355/eurrev_202009_22845

    Article  PubMed  Google Scholar 

  28. Xing PC, An P, Hu GY, Wang DL, Zhou MJ (2020) LncRNA MIAT promotes inflammation and oxidative stress in sepsis-induced cardiac injury by targeting miR-330-5p/TRAF6/NF-κB Axis. Biochem Genet 58(5):783–800. https://doi.org/10.1007/s10528-020-09976-9

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, Chen Y (2016) The emerging function and mechanism of ceRNAs in cancer. Trends Genet 32(4):211–224. https://doi.org/10.1016/j.tig.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D, Fan Z (2018) Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway. Cancer Cell Int 18:59. https://doi.org/10.1186/s12935-017-0477-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352. https://doi.org/10.1002/emmm.201302451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong SY, Guo YJ, Feng Y, Cui XX, Kuo SH, Liu T, Wu YC (2016) The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 470(2):453–459. https://doi.org/10.1016/j.bbrc.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong K, Qu B, Liao D, Liu D, Wang C, Zhou J, Pan X (2016) MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ-dependent manner. Biochem Biophys Res Commun 478(1):260–267. https://doi.org/10.1016/j.bbrc.2016.07.057

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XX designed the experiments and wrote the paper; XX, YZ, YK, SL, YW and YW carried out the experiments; YZ performed the statistical analysis; LW the experiments and revised the manuscript.

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, Y., Kang, Y. et al. LncRNA MIAT Inhibits MPP+-Induced Neuronal Damage Through Regulating the miR-132/SIRT1 Axis in PC12 Cells. Neurochem Res 46, 3365–3374 (2021). https://doi.org/10.1007/s11064-021-03437-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03437-4

Keywords

Navigation