Skip to main content

Advertisement

Log in

Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Huagaimu (Manglietiastrum sinicum) trees are critically endangered species and classified as a plant species with extremely small populations in China. Rhizospheres and bulk soils prokaryotic communities play an important role to protect and promote plants health and growth. However, the compositions and structures of prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils are still poorly understood. In the present study, prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils were compared using high-throughput sequencing. Thirty-two phyla, 76 classes, 193 orders, 296 families, and 470 genera of prokaryotes were obtained. Proteobacteria and Acidobacteria were the two most abundant phyla in all soil samples. The compositions and structures of prokaryotic communities were overall similar, and the abundance of some taxa varied significantly among soil samples. Soil prokaryotic communities were significantly affected by soil pH, total nitrogen, total phosphorus, and total potassium. Eleven of predicted functions were significantly different among the four soil groups. This study provides for the first insights into the compositions, structures, and potential functions of prokaryotic communities associated with wild and reintroduced M. sinicum rhizospheres and bulk soils, and providing a foundation for future research to help protect this endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding JY, Yuan C, Cao MM, Liu WW, Yu C, Zhang HY, Zhang Y, Di YT, He HP, Li SL, Hao XJ (2014) Antimicrobial constituents of the mature carpels of Manglietiastrum sinicum. J Nat Prod 77(8):1800–1805. https://doi.org/10.1021/np500187c

    Article  CAS  PubMed  Google Scholar 

  2. Zheng YL, Sun WB (2009) Seed sermination of huagaimu, a critically endangered plant endemic to southeastern Yunnan, China. HortTechnology 19(2):427–431. https://doi.org/10.1007/s10658-008-9382-2

    Article  CAS  Google Scholar 

  3. Law YW (1979) A new genus of magnoliaceae from China. Acta Phytotaxon Sin 17(4):72–74

    Google Scholar 

  4. Chen BL, Nooteboom HP (1993) Notes on Magnoliaceae III: the Magnoliaceae of China. Ann Mo Bot Gard 80(4):999–1104. https://doi.org/10.2307/2399942

    Article  Google Scholar 

  5. Chen Y, Chen G, Yang J, Sun WB (2016) Reproductive biology of Magnolia sinica (magnoliaecea), a threatened species with extremely small populations in Yunnan, China. Plant Divers 38(5):253–258. https://doi.org/10.1016/j.pld.2016.09.003

    Article  PubMed  Google Scholar 

  6. Sima YK, Lu SG (2009) A new system for the family magnoliaceae. The second international symposium on the family magnoliaceae, Guangzhou, Guangdong, 2009. University of Science & Technology Press, Wuhan, pp 55–71

    Google Scholar 

  7. Wu ZY (2006) Flora of Yunnan. Science Press, Beijing, China

    Google Scholar 

  8. Wang B, Ma YP, Chen G, Li CR, Dao ZL (2016) Rescuing Magnolia sinica (Magnoliaceae), a critically endangered species endemic to Yunnan, China. Oryx 50(3):446–449. https://doi.org/10.1017/S0030605315000435

    Article  Google Scholar 

  9. Deng S, Wu YN, Wu KL, Fang L, Li L, Zeng SJ (2020) Breeding characteristics and artificial propagation of 14 species of wild plant with extremely small populations (WPESP) in China. Biodivers Sci 28(3):385–400. https://doi.org/10.17520/biods.2020045

    Article  Google Scholar 

  10. He HP (2019) Protecting plant diversity—human beings in action. Life World 5:12–15

    Google Scholar 

  11. Wang BG, Hong X, Li L, Zhou J, Hao XJ (2000) Chemical constituents of two Chinese Magnoliaceae plants, Tsoongiodendron odorum and Manglietiastrum sinicum, and their inhibition of platelet aggregation. Planta Med 66(6):511–515. https://doi.org/10.1055/s-2000-8654

    Article  CAS  PubMed  Google Scholar 

  12. Jiang L, Pang J, Xiao WL, Zhang GL, Liu J, Yang C (2018) Control effects of 56 extracts of Chinese traditional medicine on cotton wilt disease. Biotechnol Bull 34(2):128–134. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2018-0025

    Article  Google Scholar 

  13. Zheng YL, Sun WB, Zhao XF (2008) Seed dormancy and germination of Manglietiastrum sinicum law, a globally critical endangered plant in China. Plant Physiol Commun 44(1):100–102. https://doi.org/10.13592/j.cnki.ppj.2008.01.008

    Article  Google Scholar 

  14. Sun WB (2013) Conserving plant species with extremely small populations (PSESP) in Yunnan: practice and exploration. Yunnan Science and Technology Press, Kunming, Yunnan, China

    Google Scholar 

  15. Tian K, Zhang GX, Cheng XF, He SJ, Yang YM, Yang YX (2003) The habitat fragility of Manglietiastrum sinicum. Acta Bot Yunnanica 25(5):551–556

    Google Scholar 

  16. Chu YX, Li F, Ouyang ZQ (2012) Cutting propagation techniques of Managlietastram sinicum. For Inventory Plann 37(1):128–130. https://doi.org/10.3969/j.issn.1671-3168.2012.01.029

    Article  Google Scholar 

  17. Chen E, Luo JH, Xu XH, Xu DP, Zhong RM, Zhou BB (2017) Study on the introduction adaptability of Manglietiastrum sinicum in Zhanjiang. Trop For 45(4):9-10+18. https://doi.org/10.3969/j.issn.1672-0938.2017.04.003

    Article  CAS  Google Scholar 

  18. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  19. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  20. Shen QQ, Yang JY, Su DF, Li ZY, Xiao W, Wang YX, Cui XL (2020) Comparative analysis of fungal diversity in rhizospheric soil from wild and reintroduced Magnolia sinica estimated via high-throughput sequencing. Plants 9(5):600. https://doi.org/10.3390/plants9050600

    Article  CAS  PubMed Central  Google Scholar 

  21. Buée M, Boer WD, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321(1–2):189–212. https://doi.org/10.1007/s11104-009-9991-3

    Article  CAS  Google Scholar 

  22. Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457. https://doi.org/10.1007/s00572-010-0332-4

    Article  PubMed  Google Scholar 

  23. Mekonnen B, Yahya A, Alström S (2010) Micro-organisms associated with endangered Cordeauxia edulis affect its growth and inhibit pathogens. Afr J Agric Res 5(24):3360–3368. https://doi.org/10.5897/AJAR10.224

    Article  CAS  Google Scholar 

  24. Jia L (2007) The study on soil microbial diversity of rare and endangered Pinus bungeana Zucc. et Endl. Dissertation, Northwest Normal University, Lanzhou, Gansu

  25. Yi SR, Huang Y, Xiao B, Quan J, Han F, Wei ZQ, Cao HQ (2012) A preliminary study of the dynamic variation of rhizosphere microorganism communities of the endangered plant Cathaya argyrophylla. J Southwest Univ (Nat Sci Ed) 341(12):48–53. https://doi.org/10.13718/j.cnki.xdzk.2012.12.028

    Article  Google Scholar 

  26. Liu YH, Guo JW, Li L, Asem MD, Zhang YG, Mohamad OA, Salam N, Li WJ (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis K. M. Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9(3):432–445. https://doi.org/10.1007/s40333-017-0015-5

    Article  Google Scholar 

  27. Kim HS, Gang GH, Park E, Kwak YS (2017) Revealed the status of microbial diversity and structure in soil and rhizosphere of endangered plant species Cypripedium japonicum. J Agric Life Sci 51(5):9–16. https://doi.org/10.14397/jals.2017.51.5.9

    Article  Google Scholar 

  28. Duan XX, Xu FF, Qin D, Gao TC, Shen WY, Zuo SH, Yu BH, Xu JR, Peng YJ, Dong JY (2019) Diversity and bioactivities of fungal endophytes from Distylium chinense, a rare waterlogging tolerant plant endemic to the three Gorges reservoir. BMC Microbiol 19(1):278. https://doi.org/10.1186/s12866-019-1634-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao SC (2019) Isolation, screening and promoting effect of rhizosphere soil functional strains of four endangered plants in desert. Dissertation, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region

  30. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920. https://doi.org/10.1073/pnas.1414592112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang DS, Erihemu, Yang B (2019) Diversity of bacterial communities in the rhizosphere of the endangered plant, Paeonia jishanensis. Arch Biol Sci 71(3):525–531. https://doi.org/10.2298/ABS190203036W

    Article  Google Scholar 

  32. Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP (2014) Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol 90(3):844–857. https://doi.org/10.1111/1574-6941.12438

    Article  CAS  PubMed  Google Scholar 

  33. Yang JY, Wei SJ, Su DF, Zhang ZR, Chen SY, Luo ZW, Shen XM, Lai YH, Jamil A, Tong JY, Cui XL (2020) Comparison of the rhizosphere soil microbial community structure and diversity between powdery mildew infected and noninfected strawberry plants in a greenhouse by high-throughput sequencing technology. Curr Microbiol 77(8):1724–1736. https://doi.org/10.1007/s00284-020-01948-x

    Article  CAS  PubMed  Google Scholar 

  34. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  36. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  37. Chen MH, He SY, Li JQ, Hu WJ, Ma YT, Wu L, Gang G (2020) Co-occurrence patterns between bacterial and fungal communities in response to a vegetation gradient in a freshwater wetland. Can J Microbiol 65(10):722–737. https://doi.org/10.1139/cjm-2019-0147

    Article  CAS  Google Scholar 

  38. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  39. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 32(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  Google Scholar 

  40. Hu H, Chen XJ, Hou FJ, Wu YP, Cheng YX (2017) Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front Microbiol 8:606. https://doi.org/10.3389/fmicb.2017.00606

    Article  Google Scholar 

  41. Lin YT, Whitman WB, Coleman DC, Chiu CY (2018) Effects of reforestation on the structure and diversity of bacterial communities in subtropical low mountain forest soils. Front Microbiol 9:1968. https://doi.org/10.3389/fmicb.2018.01968

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4(suppl)):1044–1051. https://doi.org/10.1590/S1415-47572012000600020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, El-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA (2020) Halotolerant marine rhizosphere-competent Actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation. Front Microbiol 11:552. https://doi.org/10.3389/fmicb.2020.00552

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang BL, Wu XK, Zhang GS, Li SY, Zhang W, Chen XM, Sun LK, Zhang BG, Liu GX, Chen T (2016) The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale. Environ Res Lett 11:054012. https://doi.org/10.1088/1748-9326/11/5/054012

    Article  Google Scholar 

  45. Elbendary AA, Hessain AM, El-Hariri MD, Seida AA, Moussa IM, Mubarak AS, Kabli SA, Hemeg HA, Jakee JKE (2018) Isolation of antimicrobial producing Actinobacteria from soil samples. Saudi J Biol Sci 25(1):44–46. https://doi.org/10.1016/j.sjbs.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  46. Borah A, Thakur D (2020) Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front Microbiol 11:318. https://doi.org/10.3389/fmicb.2020.00318

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, 1st edn. Springer, Berlin, pp 97–116. https://doi.org/10.1007/978-3-642-13612-2_5

    Chapter  Google Scholar 

  48. Figueiredo MDVB, Seldin L, de Araujo FF, Mariano RDLM (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, 1st edn. Springer, Berlin, pp 21–43. https://doi.org/10.1007/978-3-642-13612-2_2

    Chapter  Google Scholar 

  49. Gouda S, Kerry RG, Samal D, Mahapatra GP, Das G, Patra JK (2018) Application of plant growth promoting rhizobacteria in agriculture. In: Kumar P, Patra JK, Chandra P (eds) Advances in microbial biotechnology current trends and future prospects, 1st edn. Apple Academic Press, India, pp 73–87. https://doi.org/10.1201/9781351248914-3

    Chapter  Google Scholar 

  50. Araujo R, Gupta VVSR, Reith F, Bissett A, Mele P, Franco CMM (2020) Biogeography and emerging significance of Actinobacteria in Australia and Northern Antarctica soils. Soil Biol Biochem 146:107805. https://doi.org/10.1016/j.soilbio.2020.107805

    Article  CAS  Google Scholar 

  51. Stauffer MD, Sulewski G (2001) Phosphorus––the essential element of life status and prospects of Chinese fertilizer application symposium in 2001 134–143

  52. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol 18(6):1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  53. Zhang BL, Wu XK, Tai XS, Sun LK, Wu MH, Zhang W, Chen XM, Zhang GS, Chen T, Liu GX, Dyson P (2019) Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe river basin of Northwest China. Front Microbiol 10:2209. https://doi.org/10.3389/fmicb.2019.02209

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang C, Ma X, Zhu RQ, Liu ZZ, Gu MM, Zhang JY, Li Y, Xu YY, Zhu DH (2020) Analysis of the endophytic bacteria community structure and function of Panax notoginseng based on high-throughput sequencing. Curr Microbiol 77:2745–2750. https://doi.org/10.1007/s00284-020-02068-2

    Article  CAS  PubMed  Google Scholar 

  55. Wang F, Zhao HW, Xiang HY, Wu LJ, Men X, Qi C, Chen GQ, Zhang HB, Wang Y, Xian M (2018) Species diversity and functional prediction of surface bacterial communities on aging flue-cured tobaccos. Curr Microbiol 75:1306–1315. https://doi.org/10.1007/s00284-018-1525-x

    Article  CAS  PubMed  Google Scholar 

  56. Zhang JC, Wang XR, Huo DX, Li W, Hu QS, Xu CB, Liu SX, Li CF (2016) Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci Rep 6:32524. https://doi.org/10.1038/srep32524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thanks the National Natural Science Foundation of China (NSFC) and the Joint Project of Basic Research of Yunnan Provincial Universities for grants support.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31960220, 31660089, 32071570, 31660001, and 31760017) and the Joint Project of Basic Research of Yunnan Provincial Universities (2018FH001028).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and designed by D-FS, Q-QS, J-YY, Z-YL, WX, Y-XW, Z-GD, and X-LC; the experiments were performed by D-FS, Q-QS, J-YY, Z-YL, WX, Y-XW, Z-GD, and X-LC; the data were analyzed by D-FS, Q-QS, and J-YY; the manuscript was written by D-FS and Q-QS. All authors read and improved the manuscript and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiao-Long Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, DF., Shen, QQ., Yang, JY. et al. Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations. Curr Microbiol 78, 3877–3890 (2021). https://doi.org/10.1007/s00284-021-02653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02653-z

Navigation