Skip to main content

Advertisement

Log in

Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

UDP-N-Acetyl glucosamine-2 epimerase/N-acetyl mannosamine kinase (GNE) catalyzes key enzymatic reactions in the biosynthesis of sialic acid. Mutation in GNE gene causes GNE myopathy (GNEM) characterized by adult-onset muscle weakness and degeneration. However, recent studies propose alternate roles of GNE in other cellular processes beside sialic acid biosynthesis, particularly interaction of GNE with α-actinin 1 and 2. Lack of appropriate model system limits drug and treatment options for GNEM as GNE knockout was found to be embryonically lethal. In the present study, we have generated L6 rat skeletal muscle myoblast cell-based model system carrying one single Gne allele where GNE gene is knocked out at exon-3 using AAV mediated SEPT homology recombination (SKM-GNEHz). The cell line was heterozygous for GNE gene with one wild type and one truncated allele as confirmed by sequencing. The phenotype showed reduced GNE epimerase activity with little reduction in sialic acid content. In addition, the heterozygous GNE knockout cells revealed altered cytoskeletal organization with disrupted actin filament. Further, we observed increased levels of RhoA leading to reduced cofilin activity and causing reduced F-actin polymerization. The disturbed signaling cascade resulted in reduced migration of SKM-GNEHz cells. Our study indicates possible role of GNE in regulating actin dynamics and cell migration of skeletal muscle cell. The skeletal muscle cell-based system offers great potential in understanding pathomechanism and target identification for GNEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data are enclosed in the manuscript and supplementary materials. Anything else required shall be provided.

Code Availability

NA

Abbreviations

GNE:

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase

ER:

Endoplasmic reticulum

AAV:

Adeno-associated viruses

SEPT:

Synthetic exon promoter trap

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

Src:

Proto-oncogene tyrosine-protein kinase (sarcoma)

ManNac:

N-acetylmannosamine

NCAM:

Neural cell adhesion molecule

UPR:

Unfolded protein response

CRMP1:

Collapsin response mediator protein 1

ROCK:

Rho-associated protein kinase

LIMK:

LIM (Lin-11 Isl-1 Mec-3) kinase

Aβ 1–42:

Amyloid-β 1–42

loxP:

Locus of X-over P1

References

  1. Nestler-parr S, Korchagina D, Toumi M et al (2018) Challenges in research and health technology assessment of rare disease technologies : report of the ISPOR Rare Disease Special Interest Group. Value Heal 21:493–500. https://doi.org/10.1016/j.jval.2018.03.004

    Article  Google Scholar 

  2. Awasthi K, Arya R, Bhattacharya A, Bhattacharya S (2019) The inherited neuromuscular disorder GNE myopathy: research to patient care. Neurol India 67:1213–1219. https://doi.org/10.4103/0028-3886.271259

    Article  PubMed  Google Scholar 

  3. Devi S, Yadav R, Chanana P, Arya R (2018) Fighting the cause of Alzheimer’s and GNE myopathy. Front Neurosci 12:1–14. https://doi.org/10.3389/fnins.2018.00669

    Article  Google Scholar 

  4. Nonaka I, Sunohara N, Ishiura S, Satoyoshi E (1981) Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 51:141–155. https://doi.org/10.1016/0022-510X(81)90067-8

    Article  CAS  PubMed  Google Scholar 

  5. Argov Z, Yarom R (1984) “Rimmed vacuole myopathy” sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci 64:33–43. https://doi.org/10.1016/0022-510X(84)90053-4

    Article  CAS  PubMed  Google Scholar 

  6. Nishino I, Noguchi S, Murayama K et al (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology. https://doi.org/10.1212/01.WNL.0000041631.28557.C6

    Article  PubMed  Google Scholar 

  7. Huizing M, Carrillo-Carrasco N, Malicdan MCV et al (2014) GNE myopathy: new name and new mutation nomenclature. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2014.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta - Mol Basis Dis 1792:881–887

    Article  CAS  Google Scholar 

  9. Eisenberg I, Avidan N, Potikha T et al (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87. https://doi.org/10.1038/ng718

    Article  CAS  PubMed  Google Scholar 

  10. Carrillo N, Malicdan MC, Huizing M (2018) GNE Myopathy: etiology, diagnosis, and therapeutic challenges. Neurotherapeutics 15:900–914. https://doi.org/10.1007/s13311-018-0671-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Benyamini H, Kling Y, Yakovlev L et al (2020) Upregulation of hallmark muscle genes protects GneM743T/M743T mutated knock-in mice from kidney and muscle phenotype. J Neuromuscul Dis. https://doi.org/10.3233/JND-190461

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pogoryelova O, Wilson IJ, Mansbach H et al (2019) GNE genotype explains 20% of phenotypic variability in GNE myopathy. Neurol Genet. https://doi.org/10.1212/NXG.0000000000000308

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nalini A, Gayathri N, Dawn R (2010) Distal myopathy with rimmed vacuoles: report on clinical characteristics in 23 cases. Neurol India 58:235–241. https://doi.org/10.4103/0028-3886.63804

    Article  CAS  PubMed  Google Scholar 

  14. Nishino I, Carrillo-Carrasco N, Argov Z (2015) GNE myopathy: current update and future therapy. J Neurol Neurosurg Psychiatry 86:385–392

    Article  Google Scholar 

  15. Pogoryelova O, González Coraspe JA, Nikolenko N et al (2018) GNE myopathy: From clinics and genetics to pathology and research strategies. Orphanet J Rare Dis 13:1–15. https://doi.org/10.1186/s13023-018-0802-x

    Article  Google Scholar 

  16. Celeste FV, Vilboux T, Ciccone C et al (2014) Mutation update for GNE gene variants associated with GNE myopathy. Hum Mutat 35:915–926. https://doi.org/10.1002/humu.22583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nalini A, Nishino I, Gayathri N, Hayashi Y (2013) GNE myopathy in India. Neurol India. https://doi.org/10.4103/0028-3886.117609

    Article  PubMed  Google Scholar 

  18. Chamova T, Guergueltcheva V, Gospodinova M, et al (2015) GNE myopathy in Roma patients homozygous for the p.I618T founder mutation. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2015.07.004

  19. Haghighi A, Nafissi S, Qurashi A et al (2016) Genetics of GNE myopathy in the non-Jewish Persian population. Eur J Hum Genet. https://doi.org/10.1038/ejhg.2015.78

    Article  PubMed  Google Scholar 

  20. Chakravorty S, Berger K, Arafat D et al (2019) Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion. Muscle Nerve. https://doi.org/10.1002/mus.26486

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hinderlich S, Weidemann W, Yardeni T et al (2015) UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): a master regulator of sialic acid synthesis. Top Curr Chem. https://doi.org/10.1007/128_2013_464

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yonekawa T, Malicdan MCV, Cho A et al (2014) Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137:2670–2679. https://doi.org/10.1093/brain/awu210

    Article  PubMed  PubMed Central  Google Scholar 

  23. Argov Z, Caraco Y, Lau H et al (2016) Aceneuramic acid extended release administration maintains upper limb muscle strength in a 48-week study of subjects with GNE myopathy: results from a phase 2, randomized, controlled study. J Neuromuscul Dis. https://doi.org/10.3233/JND-159900

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lochmüller H, Behin A, Caraco Y et al (2019) A phase 3 randomized study evaluating sialic acid extended-release for GNE myopathy. Neurology. https://doi.org/10.1212/WNL.0000000000006932

    Article  PubMed  PubMed Central  Google Scholar 

  25. Valles-Ayoub Y, Esfandiarifard S, Sinai P et al (2012) Serum neural cell adhesion molecule is hyposialylated in hereditary inclusion body myopathy. Genet Test Mol Biomarkers 16:313–317. https://doi.org/10.1089/gtmb.2011.0146

    Article  CAS  PubMed  Google Scholar 

  26. Grover S, Arya R (2014) Role of UDP-N-Acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion. Mol Neurobiol. https://doi.org/10.1007/s12035-013-8604-6

    Article  PubMed  Google Scholar 

  27. Chanana P, Padhy G, Bhargava K, Arya R (2017) Mutation in GNE downregulates peroxiredoxin IV altering ER redox homeostasis. NeuroMolecular Med. https://doi.org/10.1007/s12017-017-8467-5

    Article  PubMed  Google Scholar 

  28. Sela I, Yakovlev L, Becker Cohen M et al (2013) Variable phenotypes of knockin mice carrying the M712T Gne mutation. NeuroMolecular Med. https://doi.org/10.1007/s12017-012-8209-7

    Article  PubMed  Google Scholar 

  29. Li H, Chen Q, Liu F et al (2013) Unfolded protein response and activated degradative pathways regulation in GNE myopathy. PLoS One 8.https://doi.org/10.1371/journal.pone.0058116

  30. Sela I, Krentsis IM, Shlomai Z et al (2011) The proteomic profile of hereditary inclusion body myopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0016334

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weidemann W, Stelzl U, Lisewski U et al (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580:6649–6654. https://doi.org/10.1016/j.febslet.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  32. Amsili S, Zer H, Hinderlich S et al (2008) UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3.https://doi.org/10.1371/journal.pone.0002477

  33. Harazi A, Becker-Cohen M, Zer H et al (2017) The Interaction of UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) and Alpha-Actinin 2 Is Altered in GNE Myopathy M743T Mutant. Mol Neurobiol 54:2928–2938. https://doi.org/10.1007/s12035-016-9862-x

    Article  CAS  PubMed  Google Scholar 

  34. Henderson CA, Gomez CG, Novak SM et al (2017) Overview of the muscle cytoskeleton. Compr Physiol. https://doi.org/10.1002/cphy.c160033

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kowalski K, Kołodziejczyk A, Sikorska M et al (2017) Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adhes Migr. https://doi.org/10.1080/19336918.2016.1227911

    Article  Google Scholar 

  36. Kim JH, Jin P, Duan R, Chen EH (2015) Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 32:162–170. https://doi.org/10.1016/j.gde.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan J, Chan C, McNamara EL et al (2018) Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Front Physiol. https://doi.org/10.3389/fphys.2018.01756

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horak I, Rohde E, Wiechens N et al (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.072066199

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schwarzkopf M, Knobeloch K-P, Rohde E et al (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.072066199

    Article  PubMed  PubMed Central  Google Scholar 

  40. Galeano B, Klootwijk R, Manoli I et al (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117:1585–1594. https://doi.org/10.1172/JCI30954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malicdan MCV, Noguchi S, Nishino I (2007) Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy 3:396–398. https://doi.org/10.1177/1756285609359546

    Article  CAS  PubMed  Google Scholar 

  42. Daya A, Vatine GD, Becker-Cohen M et al (2014) Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet. https://doi.org/10.1093/hmg/ddu045

    Article  PubMed  Google Scholar 

  43. Bosch-Morató M, Iriondo C, Guivernau B, et al (2016) Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy. Oncotarget 7:13354–71. https://doi.org/10.18632/oncotarget.7997

  44. Tanner ME (2005) The enzymes of sialic acid biosynthesis. Bioorg Chem 33:216–228. https://doi.org/10.1016/j.bioorg.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  45. Rago C, Vogelstein B, Bunz F (2007) Genetic knockouts and knockins in human somatic cells. Nat Protoc. https://doi.org/10.1038/nprot.2007.408

    Article  PubMed  Google Scholar 

  46. Van Helvert S, Storm C, Friedl P (2017) Mechanoreciprocity in cell migration. Nat Cell Biol 20:8–20. https://doi.org/10.1038/s41556-017-0012-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DesMarais V, Ghosh M, Eddy R, Condeelis J (2004) Cofilin takes the lead. J Cell Sci. https://doi.org/10.1242/jcs.01631

    Article  PubMed  Google Scholar 

  48. Suetsugu S, Takenawa T (2003) Regulation of cortical actin networks in cell migration. Int Rev Cytol. https://doi.org/10.1016/S0074-7696(03)29006-9

    Article  PubMed  Google Scholar 

  49. Ono S (2010) Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton 67:677–692. https://doi.org/10.1002/cm.20476

    Article  CAS  PubMed  Google Scholar 

  50. Sampath, S. C., Sampath, S. C., & Millay, D. P. (2018). Myoblast fusion confusion: the resolution begins. Skelet.Muscle. 8(1). https://doi.org/10.1186/s13395-017-0149-3

  51. Webster MT, Fan CM (2013) c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS ONE. https://doi.org/10.1371/journal.pone.0081757

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. https://doi.org/10.1083/jcb.144.6.1235

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mu X, Usas A, Tang Y et al (2013) RhoA mediates defective stem cell function and heterotopic ossification in dystrophic muscle of mice. FASEB J. https://doi.org/10.1096/fj.13-233460

    Article  PubMed  PubMed Central  Google Scholar 

  54. Costa P, Scales TME, Ivaska J, Parsons M (2013) Integrin-Specific Control of Focal Adhesion Kinase and RhoA Regulates Membrane Protrusion and Invasion. PLoS One 8.https://doi.org/10.1371/journal.pone.0074659

  55. Katoh K, Kano Y, Noda Y (2010) Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface 8:305–311. https://doi.org/10.1098/rsif.2010.0419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Destaing O, Sanjay A, Itzstein C et al (2008) The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell. https://doi.org/10.1091/mbc.E07-03-0227

    Article  PubMed  PubMed Central  Google Scholar 

  57. Graham ZA, Gallagher PM, Cardozo CP (2015) Focal adhesion kinase and its role in Graham, Z. A., Gallagher, P. M., & Cardozo, C. P. (2015). Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 36:305–315. https://doi.org/10.1007/s10974-015-9415-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li SY, Mruk DD, Cheng CY (2013) Focal adhesion kinase is a regulator of F-actin dynamics. Spermatogenesis. https://doi.org/10.4161/spmg.25385

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsai WC, Yu TY, Lin LP et al (2017) Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation. J Orthop Res. https://doi.org/10.1002/jor.23547

    Article  PubMed  Google Scholar 

  60. Pollard TD, Cooper JA (2009) Actin, a Central Player in Cell Shape and Movement. Science 326:1208–1212. https://doi.org/10.1126/science.1175862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen SC, Huang CH, Lai SJ et al (2016) Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis. Sci Rep. https://doi.org/10.1038/srep23274

    Article  PubMed  PubMed Central  Google Scholar 

  62. Noguchi S, Keira Y, Murayama K et al (2004) Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279:11402–11407. https://doi.org/10.1074/jbc.M313171200

    Article  CAS  PubMed  Google Scholar 

  63. Devi SS, Yadav R, Arya R (2021) Altered actin dynamics in cell migration of GNE mutant cells 9:1–18. https://doi.org/10.3389/fcell.2021.603742

    Article  Google Scholar 

  64. Singh R, Arya R (2016) GNE myopathy and cell apoptosis: a comparative mutation analysis. Mol Neurobiol 53:3088–3101. https://doi.org/10.1007/s12035-015-9191-5

    Article  CAS  PubMed  Google Scholar 

  65. Singh R, Chaudhary P, Arya R (2018) Role of IGF-1R in ameliorating apoptosis of GNE deficient cells. Sci Rep. https://doi.org/10.1038/s41598-018-25510-9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Amsili S, Zer H, Hinderlich S et al (2008) UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS ONE. https://doi.org/10.1371/journal.pone.0002477

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harazi A, Becker-Cohen M, Zer H et al (2017) The Interaction of UDP-N-acetylglucosamine 2-epimerase/N-Acetylmannosamine kinase (GNE) and alpha-actinin 2 is altered in GNE myopathy M743T mutant. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9862-x

    Article  PubMed  Google Scholar 

  68. Castellani L, Salvati E, Alemà S, Falcone G (2006) Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem. https://doi.org/10.1074/jbc.M601390200

    Article  PubMed  Google Scholar 

  69. Huveneers S, Danen EHJ (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci. https://doi.org/10.1242/jcs.039446

  70. Urciuolo A, Urbani L, Perin S et al (2018) Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Sci Rep. https://doi.org/10.1038/s41598-018-26371-y

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang W, Chen M, Gao Y et al (2018) P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem. https://doi.org/10.1002/jcb.26350

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ridley AJ (2011) Life at the Leading Edge. Cell 145:1012–1022. https://doi.org/10.1016/j.cell.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  73. Ambriz X, de Lanerolle P, Ambrosio JR (2018) The mechanobiology of the actin cytoskeleton in stem cells during differentiation and interaction with biomaterials. Stem Cells Int 1–11. https://doi.org/10.1155/2018/2891957

  74. Babij P, Booth FW (1988) α-Actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol - Cell Physiol 254.https://doi.org/10.1152/ajpcell.1988.254.5.c651

  75. Holinstat M, Knezevic N, Broman M et al (2006) Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role in regulation of endothelial permeability. J Biol Chem. https://doi.org/10.1074/jbc.M511248200

    Article  PubMed  Google Scholar 

  76. Pirone DM, Liu WF, Ruiz SA et al (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol. https://doi.org/10.1083/jcb.200510062

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13:25–32. https://doi.org/10.1016/j.jot.2018.01.002

    Article  Google Scholar 

  78. Lehka L, Rędowicz MJ (2020) Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 104:81–92. https://doi.org/10.1016/j.semcdb.2020.02.004

    Article  PubMed  Google Scholar 

  79. Lepper C, Conway SJ, Fan C (2010) Distinct genetic requirements 460:627–631. https://doi.org/10.1038/nature08209.Adult

    Article  Google Scholar 

  80. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. https://doi.org/10.1152/physrev.00018.2013

    Article  PubMed  Google Scholar 

  81. Karolczak J, Pavlyk I, Majewski Ł et al (2015) Involvement of unconventional myosin VI in myoblast function and myotube formation. Histochem Cell Biol. https://doi.org/10.1007/s00418-015-1322-6

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yuan Z, Qiao C, Hu P et al (2011) A versatile adeno-associated virus vector producer cell line method for scalable vector production of different serotypes. Hum Gene Ther. https://doi.org/10.1089/hum.2010.241

    Article  PubMed  Google Scholar 

  83. Bork K, Reutter W, Weidemann W, Horstkorte R (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett. https://doi.org/10.1016/j.febslet.2007.07.060

    Article  PubMed  Google Scholar 

  84. Blume A, Ghaderi D, Liebich V et al (2004) UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase, functionally expressed in and purified from Escherichia coli, yeast, and insect cells. Protein Expr Purif 35:387–396. https://doi.org/10.1016/j.pep.2004.02.013

    Article  CAS  PubMed  Google Scholar 

  85. Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetyl amino sugars. J Biol Chem 217:959–966. https://doi.org/10.1016/s0021-9258(18)65959-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Sudha Bhattacharya, School of Environmental Sciences, Jawaharlal Nehru University, India, and Prof. Alok Bhattacharya, Ashoka University, for their support and help during the project. We also acknowledge Dr. Sivaprakash Ramalingam, IGIB, for valuable suggestions. We acknowledge Advanced Instrumentation Research Facility, JNU, and its staff members (Ashok Sahu and Prabhat Yadav) for helping in acquiring confocal images.

Funding

This work was supported by:

1. Science and Engineering Research Board, Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi; Grant Number-EMR/2015/001798.

2. Department of Atomic Energy, Government of India; Grant Number-37(1)/14/31/2018-BRNS/37253

Author information

Authors and Affiliations

Authors

Contributions

RA conceptualized, designed, brought financial support through grants, and analyzed the data. RA compiled and wrote the manuscript. SSD performed the experiments, generated the cell line and characterized the cell line, and helped in manuscript draft writing. RY validated the data by performing experiments, blind study and editing of the manuscript. FM confirmed the cell lines through sequencing and performed sialic acid content study. PC characterized the cell line by performing epimerase assay and helped in literature search. SS helped in editing of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ranjana Arya.

Ethics declarations

Ethics Approval

The study was performed in the laboratory cell lines and does not involve human or animal subjects.

Consent to Participate

NA.

Consent for Publication

All the authors have given consent for publication.

Conflict of Interest

The authors declare no conflict of interest.

Competing Interest Statement

The current work is related to a patent application number 202011019014 dated on 4 May 2020 in the Indian Patent Office, titled 'A skeletal Muscle cell-based model for GNE Myopathy'. This association does not alter the author adherence to all Molecular Neurobiology policies on sharing data as detailed online.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S.S., Yadav, R., Mashangva, F. et al. Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Mol Neurobiol 58, 6316–6334 (2021). https://doi.org/10.1007/s12035-021-02549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02549-w

Keywords

Navigation