Skip to main content
Log in

Enhancing genetic gains through marker-assisted recurrent selection: from phenotyping to genotyping

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Phenotypic selection, for accumulating the desirable characters to develop the crops tailored as per our need, has been the basis of the plant breeding since the time immemorial. But with the several issues associated with this approach viz., huge time, resource and space intensive approach, researchers are on continuous journey to explore more efficient approach with high throughput that could substantially deduct the time and resource requirement with high fidelity. With the advent of several molecular markers, newer avenue of the crop improvement has been explored and marker-assisted recurrent selection stand out to be an intensive approach, which has provided the breeder an efficient tool to use his skills more rigorously. Shortening the time while enhancing the selection efficiency and, thus improving the overall genetic gain has made this approach the need of the hour and choice of the breeders. This review takes you to the journey of its advent and its potential role in population improvement in both self- and cross-pollinated crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abasht B, Sandford E, Arango J, Settar P, Fulton JE, O’Sullivan NP, Hassen A, Habier D, Fernando RL, Dekkers JCM, Lamont SL (2009) Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations. BMC Genom 10:S2

    Article  CAS  Google Scholar 

  • Abdallah AA, Al AM, Geiger HH, Parzies HK (2009) Marker-assisted recurrent selection for increased out crossing in Caudatum–race Sorghum. In Proceedings of the international conference on applied biotechnology, pp 28–30

  • Abdulmalik RO, Menkir A, Meseka SK, Unachukwu N, Ado SG, Olarewaju JD, Gedil M (2017) Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Front Plant Sci 8:841

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht T, Auinger HJ, Wimmer V, Ogutu JO, Knaak C, Ouzunova M, Schön CC (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127:1375–1386

    Article  PubMed  Google Scholar 

  • Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR, Ulat VJ, Chebotarov D, Zhang G, Li Z, Mauleon R, Hamilton RS, McNally KL (2015) SNP-seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43:D1023–D1027

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Bankole F, Menkir A, Olaoye G, Crossa J, Hearne S, Unachukwu N, Gedil M (2017) Genetic gains in yield and yield related traits under drought stress and favorable environments in a maize population improved using marker assisted recurrent selection. Front Plant Sci 8:808

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann JS, Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35:111–124

    Article  Google Scholar 

  • Berilli APCG, Pereira MG, Gonçalves LSA, da Cunha KS, Ramos HCC, do Souza FilhoAmaral Júnior GA (2011) Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects. Genet Mol Res 10:2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Bänziger M (2015) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56:344–353

    Article  CAS  Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Prasanna BM, Tarekegne A, Gakunga J, Crossa J (2016) Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica 208:285–297

    Article  CAS  PubMed  Google Scholar 

  • Bhattramakki D, Rafalski A (2001) Discovery and application of single nucleotide polymorphism markers in plants. Plant genotyping: The DNA fingerprinting of plants, pp 179–192

  • Bimpong IK, Manneh B, El-Namkay R et al (2014) Mapping QTLs related to salt tolerance in rice at the young seedling stage using 384-plex single nucleotide polymorphism SNP, marker sets. Mol Plant Breed 5:47–63

    Google Scholar 

  • Boyle EA, Li YI, Pritchard J (2017) A expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burow MD, Blake TK (1998) Molecular tools for the study of complex traits. In Molecular dissection of complex traits, pp 13–29

  • Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Charmet G, Robert N, Perretant MR, Gay G, Sourdille P, Groos C, Bernard M (1999) Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred lines. Theor Appl Genet 99:1143–1148

    Article  Google Scholar 

  • Charmet G, Robert N, Perretant MR, Gay G, Sourdille P, Groos C, Bernard M (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119:89–93

    Article  CAS  Google Scholar 

  • Choudhary A, Kumar A, Kaur N (2020a) ROS and oxidative burst: roots in plant development. Plant Divers 42(1):33–43

    Article  PubMed  Google Scholar 

  • Choudhary A, Kumar A, Kaur N, Paul A (2020b) Plasmodesmata the nano bridges in plant cell: are the answer for all the developmental processes? Russian J Plant Physiol 67:785–796

    Article  CAS  Google Scholar 

  • Choudhary A, Kumar A, Kaur H, Kaur N (2021) MiRNA: the taskmaster of plant world. Biologia 76:1551–1567

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, Verdeprado H, Raghavan C, Gregorio GB, Vial L, Demont M, Biswas PS, Iftekharuddaula KM, Rahman MA, Cobb JN, Islam MR (2017) Revisiting rice breeding methods: evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci 20:337–352

    Article  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson Sr GR, Edwards M, Reiter R, Stark S, Lamkey KR (2006) Plant breeding: past, present, and future. In Plant breeding: the Arnel R. Hallauer international symposium. Ames, Iowa, USA: Blackwell Publishing, pp 3–50

  • Doi K, Iwata N, Yoshimura A (1997) The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O sativa L.). Rice Genet News 14:39–41

    CAS  Google Scholar 

  • Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9:257–262

    Article  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:154

    Article  Google Scholar 

  • Edwards M, Johnson L (1994) RFLPs for rapid recurrent selection. Analysis of molecular marker data. Joint Plant Breeding Symposia Series American Society of Agronomy, Madison, WI, pp 33–40

    Google Scholar 

  • Falconer D, Mackay TTFC (1996) Quantitative genetics

  • Falconer DS, Mackay TFC, Frankham R (1996) Introduction to quantitative genetics, 4th edn London. UK: Benjamin Cummings

  • Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F (2018) Trends in plant research using molecular markers. Planta 247:543–557

    Article  CAS  PubMed  Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90:898–917

    Article  CAS  PubMed  Google Scholar 

  • Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60:2805–2815

    Article  CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Wang C, Tang Z, Ren Y, Li Y, Zhang D, Dong Y, Zhao X (2015) Genome-wide analysis of microsatellite markers based on sequenced database in Chinese spring wheat (Triticum aestivum L.). PLoS One 10:e0141540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heffner EL, Jannink J, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Plant breeding from laboratories to fields, pp 45–83

  • Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2:10

    Article  CAS  Google Scholar 

  • Johnson R (2004) Marker assisted selection. In: Jannick J (ed) Plant Breed Rev 24:293–309

  • Kim SM, Suh JP, Lee CK, Le JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genom 289:333–343

    Article  CAS  Google Scholar 

  • Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A (2002) Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci 52:319–325

    Article  CAS  Google Scholar 

  • Kumar A, Sharma A, Sharma R, Srivastva P, Choudhary A (2021a) Exploration of wheat wild relative diversity from Lahaul valley: a cold arid desert of Indian Himalayas. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00166-w

  • Kumar A, Sharma A, Sharma R, Choudhary A, Srivastava P, Kaur H, Padhy AK (2021b) Morpho-physiological evaluation of Elymus semicostatus (Nees ex Steud.) Melderis as potential donor for drought tolerance in Wheat (Triticum aestivum L.). Genen Resour Crop Evol. https://doi.org/10.1007/s10722-021-01241-1

  • Kumar A, Choudhary A, Kaur N, Kaur H (2021c) Wake Up: it’s Time to Bloom. Russian J Plant Physiol 68:579–595

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Article  Google Scholar 

  • Li C (2020) Breeding crops by design for future agriculture. J Zhejiang Univ Sci B 21:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L et al (2013) Rice zinc finger protein dst enhances grain production through controlling gn1a/osckx2 expression. Proc Natl Acad Sci USA 110:3167–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu K, Wei L, Li X, Wang Y, Wu J et al (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marziliano N, Notarangelo MF, Cereda M, Caporale V, Coppini L, Demola MA, Guidorossi A, Crocamo A, Pigazzani F, Boffetti F, del Giudice F, Orsini F, Pirola D, Cocci A, Manzalini C, Casu G, Bianchessi M, Ardissino D, Merlini PA (2015) Rapid and portable, lab-on-chip, point-of-care genotyping for evaluating clopidogrel metabolism. Clin Chim Acta 451:240–246

    Article  CAS  PubMed  Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker assisted recurrent selection to improve grain yield and Stover quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66

    Article  CAS  Google Scholar 

  • Mayor PJ, Bernardo R (2009) Genomewide selection and marker assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci 49:1719–1725

    Article  Google Scholar 

  • Michel S, Ametz C, Gungor H, Akgöl B, Epure D, Grausgruber H, Buerstmayr H (2017) Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials. Theor Appl Genet 130:363–376

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulo M-J, Boer M, Huang X, Koornneef M, van Eeuwijk F (2008) A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica 161:107–114

    Article  Google Scholar 

  • Peleman JD, Van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  CAS  PubMed  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2016) Developing and deploying abiotic stress-tolerant maize varieties in the tropics: challenges and opportunities. Molecular Breeding for Sustainable Crop Improvement. Springer, Cham, pp 61–77

    Chapter  Google Scholar 

  • Rahman MA, Bimpong IK, Bizimana JB, Pascual ED, Arceta M, Swamy BPM et al (2017) Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R (2020) Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol 40:1–14

    Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    Article  PubMed  Google Scholar 

  • RibautJ M, Edmeades G, Perotti E, Hoisington D (2000) QTL analyses, MAS results, and perspectives for drought-tolerance improvement in tropical maize. Prod Water-Limited Environ. 131

  • Schwantes IA, do Amaral AT, de Almeida Filho JE, Vivas M, Cabral PDS, Guimarães AG, Ferreira FRA (2018) First Report of Recurrent Genomic Selection with Real Data in Popcorn and Genetic Gain Increases. BioRxiv, 466003

  • Singh BD (2012) Plant breeding, principles and methods, 9th edn. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh M, Choudhary A, Kumar A, Thapa S (2021) Genetically modified food: their problems and promise. Biotic Res Today 3(2):111–113

    Google Scholar 

  • Sorrells ME (2015) Genomic selection in plants: empirical results and implications for wheat and barley breeding programs. In: Ogihara Y et al (eds) Advances in wheat genetics: from genome to field.

  • Stam P (1994) Marker assisted breeding. JW van Ooijen, J. Jansen (eds.), In Biometrics in plant breeding: applications of molecular markers, . Proc. 9th meeting Eucarpia Section Biometrics in Plant Breeding. CPRO-DLO, Wageningen, pp 32–44

  • Sun Z, Yin X, Ding J, Yu D, Hu M, Sun X et al (2017) QTL analysis and dissection of panicle components in rice using advanced backcross populations derived from Oryza sativa cultivars HR1128 and Nipponbare. PLoS ONE 12:e0175692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suryendra PJ, Revathi P, Singh AK, Viraktamath BC (2020) Marker assisted recurrent selection for genetic male sterile population improvement in rice. Electron J Plant Breed 11:149–155

    Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa S, Baral R, Thapa S (2019) Status, Challenges and Solutions of Oil-Seed Production in India. Res Rev J Agri Allied Sci 8(1):27–34

    Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai X-H, Hing ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  CAS  PubMed  Google Scholar 

  • Tsaih SW, Lu L, Airey DC, Williams RW, Churchill GA (2005) Quantitative trait mapping in a diallel cross of recombinant inbred lines. Mamm Genome 16:344–355

    Article  PubMed  Google Scholar 

  • Wang J, Eagles HA, Trethowan R, Van Ginkel M (2005) Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding. Aust J Agric Res 56:465–473

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A et al (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2014b) Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Genet Genom 33:281–296

    CAS  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA, Song Q, Hyten DL, Cregan PB (2014c) Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Genet Genom 289:935–949

    Article  CAS  Google Scholar 

  • Woolliams JA, Berg P, Dagnachew BS, Meuwissen THE (2015) Genetic contributions and their optimization. J Anim Breed Genet 132:89–99

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, Tang Q, Gao S, Liu Y, Wang J, Lan H, Lu Y (2014) Identification of candidate genes for drought tolerance by wholegenome resequencing in maize. BMC Plant Biol 14:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi CX, Guo WZ, Zhu XF, Min LF, Zhang TZ (2004) Pyramiding breeding by marker assisted recurrent selection in upland cotton II: selection effects on resistance to Helicoverpa armigera. Sci Sin 37:801–807

    Google Scholar 

  • Zhou G, Zhang Q, Tan C, Zhang XQ, Li C (2015) Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genom 16:804

    Article  CAS  Google Scholar 

  • Zhou Y, Dong G, Tao Y, Chen C, Yang B, Wu Y et al (2016) Mapping quantitative trait loci associated with toot traits using sequencingbased genotyping chromosome segment substitution lines derived from 9311 and Nipponbare in Rice (Oryza sativa L.). PLoS ONE 11(3):e0151796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Tan L, Fu Y, Liu F, Cai H, Xie D, Wu F, Wu J, Matsumoto T, Sun C (2013) Genetic control of inflorescence architecture during rice domestication. Nat Commun 4:2200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contribution in writing a manuscript.

Corresponding author

Correspondence to Mandeep Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Nara, U., Kumar, A. et al. Enhancing genetic gains through marker-assisted recurrent selection: from phenotyping to genotyping. CEREAL RESEARCH COMMUNICATIONS 50, 523–538 (2022). https://doi.org/10.1007/s42976-021-00207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00207-4

Keywords

Navigation