Skip to main content
Log in

Flexible bandpass filter on polyimide substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A polyimide (PI)-based flexible bandpass filter is fabricated by self-metallization technology, which covers Wireless Local Area Network (WLAN) of 5.15—5.875 GHz. The measured characteristics indicate the flexible filter under flat state has the return loss of better than 20 dB, the minimum insertion loss of 0.83 dB, a 3 dB bandwidth of 0.725 GHz, and the central frequency of 5.5 GHz. At the same time, the designed filter is measured in different bending and folding conditions. Simulated and measured results are similar whether the filter is under flatting, bending, or folding conditions. Fatigue test and timeliness test are studied to confirm that the filter has stable chemical and mechanical properties. The formed silver layers fabricated by self-metallization technology have good mechanical and electrical flexibility. The designed flexible filter is promised for integration within future flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Zhang, J. Grajal, J.L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P.-C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, T. Palacios, Nature 566, 368–372 (2019). https://doi.org/10.1038/s41586-019-0892-1

    Article  CAS  Google Scholar 

  2. Y. Jiang, Y. Zhao, L. Zhang, B. Liu, Q. Li, M. Zhang, W. Pang, Small 14, 1703644 (2018). https://doi.org/10.1002/smll.201703644

    Article  CAS  Google Scholar 

  3. V. Palazzi, J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, P. Mezzanotte, A. Georgiadis, L. Roselli, M.M. Tentzeris, IEEE Trans. Microw. Theory Tech. 66, 366–379 (2018). https://doi.org/10.1109/TMTT.2017.2721399

    Article  Google Scholar 

  4. Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Adv. Energy Mater. 9, 1802605 (2019). https://doi.org/10.1002/aenm.201802605

    Article  CAS  Google Scholar 

  5. Y. Peng, M. Que, H.E. Lee, R. Bao, X. Wang, J. Lu, Z. Yuan, X. Li, J. Tao, J. Sun, J. Zhai, K.J. Lee, C. Pan, Nano Energy 58, 633–640 (2019). https://doi.org/10.1016/j.nanoen.2019.01.076

    Article  CAS  Google Scholar 

  6. Z. Wang, L. Qin, Q. Chen, W. Yang, H. Qu, Microelectron. Eng. 206, 12–16 (2019). https://doi.org/10.1016/j.mee.2018.12.006

    Article  CAS  Google Scholar 

  7. D. Cang, Z. Wang, H. Qu, Electronics 10, 334 (2021). https://doi.org/10.3390/electronics10030334

    Article  CAS  Google Scholar 

  8. H. Qu, Z. Wang, D. Cang, Polymers 11, 2068 (2019). https://doi.org/10.3390/polym11122068

    Article  CAS  Google Scholar 

  9. T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Sens. Actuators B Chem. 208, 327–333 (2015). https://doi.org/10.1016/j.snb.2014.11.043

    Article  CAS  Google Scholar 

  10. J. Wu, Z. Wu, K. Tao, C. Liu, B.-R. Yang, X. Xie, X. Lu, J. Mater. Chem. B 7, 2063–2073 (2019). https://doi.org/10.1039/C8TB02963F

    Article  CAS  Google Scholar 

  11. X. Cheng, J. Wu, R. Blank, D.E. Senior, Y. Yoon, I.E.E.E. Antennas, Wirel. 11, 1667–1670 (2012). https://doi.org/10.1109/LAWP.2013.2238600

    Article  Google Scholar 

  12. S. Liu, C. Moncion, J. Zhang, L. Balachandar, D. Kwaku, J.J. Riera, J.L. Volakis, J. Chae, ACS Sens. 4, 3175–3185 (2019). https://doi.org/10.1021/acssensors.9b01491

    Article  CAS  Google Scholar 

  13. F. Rodrigues, J.F. Ribeiro, P.A. Anacleto, A. Fouchard, O. David, P.M. Sarro, P.M. Mendes, J. Neural Eng. 17, 016010 (2019). https://doi.org/10.1088/1741-2552/ab4dbb

    Article  CAS  Google Scholar 

  14. S. Sim, Y. Lee, H.-L. Kang, K.-Y. Shin, S.-H. Lee, J.-M. Kim, Microelectron. Eng. 168, 82–88 (2017). https://doi.org/10.1016/j.mee.2016.11.011

    Article  CAS  Google Scholar 

  15. J. Jang, Y. Song, D. Yoo, T.-Y. Kim, S.-H. Jung, S. Hong, J.-K. Lee, T. Lee, Org. Electron. 15, 2822–2829 (2014). https://doi.org/10.1016/j.orgel.2014.08.025

    Article  CAS  Google Scholar 

  16. J. Ng, D. Watson, J. Sigwarth, A. McCarthy, K. Prior, D. Hand, W. Yu, R. Kay, C. Liu, M.P.Y. Desmulliez, IEEE Trans. Nanotechnol. 11, 139–147 (2012). https://doi.org/10.1109/TNANO.2011.2160092

    Article  Google Scholar 

  17. Z.-W. Lin, S.-L. Qi, D.-Z. Wu, J. Appl. Polym. Sci. 125, 3552–3559 (2012). https://doi.org/10.1002/app.36240

    Article  CAS  Google Scholar 

  18. Z. Lei, S. Huamin, W. Menzel, I.E.E.E. Microw, Wirel. Compon. Lett. 15, 13–15 (2005). https://doi.org/10.1109/LMWC.2004.840956

    Article  Google Scholar 

  19. J.-S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications (John Wiley & Sons Inc, Hoboken, NJ, USA, 2001)

    Book  Google Scholar 

  20. K. Akamatsu, S. Ikeda, H. Nawafune 19, 10366–10371 (2003). https://doi.org/10.1021/la034888r

    Article  CAS  Google Scholar 

  21. M. Zhao, Y. Zhang, Electron. Lett. 53, 661–663 (2017). https://doi.org/10.1049/el.2017.0625

    Article  Google Scholar 

  22. S. Yang, W. Li, M. Vaseem, A. Shamim, IEEE Trans. Compon. Packaging Manuf. Technol. 10, 1738–1744 (2020). https://doi.org/10.1109/TCPMT.2020.3019067

    Article  CAS  Google Scholar 

  23. H. Kao, C. Cho, L. Chang, IEEE Electron Device Lett. 34, 1584–1586 (2013). https://doi.org/10.1109/LED.2013.2285114

    Article  CAS  Google Scholar 

  24. W.-Y. Chen, M.-H. Weng, J. Electromagnet. Wave. Applicat. 24, 2363–2370 (2010). https://doi.org/10.1163/156939310793675844

    Article  Google Scholar 

  25. Y. Lan, Y. Xu, Micromachines 9, 531 (2018). https://doi.org/10.3390/mi9100531

    Article  Google Scholar 

  26. M. Sans, J. Selga, P. Vélez, J. Bonache, A. Rodríguez, V.E. Boria, F. Martín, IEEE Trans. Microwave Theory Tech. 66, 737–750 (2018). https://doi.org/10.1109/TMTT.2017.2785246

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the Nantong Science and technology project (JC2019112), supported by Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University (2020MIP003) and supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Liang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, JS., Wang, ZL., Qu, HW. et al. Flexible bandpass filter on polyimide substrate. J Mater Sci: Mater Electron 32, 25137–25148 (2021). https://doi.org/10.1007/s10854-021-06968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06968-2

Navigation