Skip to main content

Advertisement

Log in

Performance studies of an electric double-layer capacitor (EDLC) fabricated using edible oil-derived activated carbon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the synthesis of bio-carbonaceous electrode material, carbon soot (CS), by molecular growth of hydrocarbons in a simple chain reaction without any artificial environment. The activated CS (ACS) is derived by burning the mustard oil (wick-and-oil flame synthesis) followed by activation using ZnCl2. The ACS possesses more ordered layered structure with spherical morphology with higher carbon content as compared to the raw CS. The electrochemical impedance spectroscopy (EIS) studies reveal superior charge-transfer characteristics of the ACS electrodes. The galvanostatic charge–discharge (GCD) studies reveal that the electric double-layer capacitor (EDLC) utilizing the ACS electrodes delivers superior specific capacity of 50 F g−1 at 0.5 mA cm−2 than that of raw CS (28 F g−1). The EDLC fabricated using activated CS electrode shows excellent power density of 1620 W kg−1 and energy density 20.25 W h kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. N.M. Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, J. of Environ. Chem. Engg. 1, 658 (2013). https://doi.org/10.1016/j.jece.2013.09.017

    Article  CAS  Google Scholar 

  2. S. Bilge, N. K. Bakirhan, Y. O. Donar, A. Sinag, Sibel A. Ozkan, E. Ş. Okudan, 2020 J. of Electroanalytical Chem Doi: https://doi.org/10.1016/j.jelechem.2020.114286

  3. S. Prabha, D. Durgalakshmi, S. Rajendran, E. Lichtfouse, Environ. Chemi. Letters 18, 1831 (2020). https://doi.org/10.1007/s10311-020-01123-5

    Article  CAS  Google Scholar 

  4. P. Manasa, Z.J. Lei, F. Ran, J. of Energy Storage 30, 101494 (2020). https://doi.org/10.1016/j.est.2020.101494

    Article  Google Scholar 

  5. S. Ahmed, A. Ahmed, M. Rafat, J. Saudi Chem. Soc. 22, 993 (2018). https://doi.org/10.1016/j.jscs.2018.03.002

    Article  CAS  Google Scholar 

  6. S. Ahmed, A. Ahmed, M. Rafat, Surf. Coat. Technol. 349, 242 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.073

    Article  CAS  Google Scholar 

  7. S. Ahmed, A. Ahmed, M. Rafat, Mater. Res. Express 5, 045508 (2018). https://doi.org/10.1088/2053-1591/aabbe7

    Article  CAS  Google Scholar 

  8. S. Ahmed, A. Ahmed, M. Rafat, Journal of Energy Storage 26, 100988 (2019). https://doi.org/10.1016/j.est.2019.100988

    Article  Google Scholar 

  9. J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, J. of Power Sources 451, 227794 (2020). https://doi.org/10.1016/j.jpowsour.2020.227794

    Article  CAS  Google Scholar 

  10. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, T. F. Baumann. Energy Environ. Sci. 4, 656 (2011). https://doi.org/10.1039/C0EE00627K

    Article  CAS  Google Scholar 

  11. F. Meng, X. Zhang, B. Xu, S. Yue, H. Guo, Y. Luo, J. Mater. Chem. 21, 18537 (2011). https://doi.org/10.1039/C1JM13960F

    Article  CAS  Google Scholar 

  12. Z. Sui, Q. Meng, X. Zhang, R. Ma, B. Cao, J. Mater. Chem. 22, 8767 (2012). https://doi.org/10.1039/C2JM00055E

    Article  CAS  Google Scholar 

  13. X.L. Wu, T. Wen, H.L. Guo, S. Yang, X. Wang, A.W. Xu, ACS Nano 7, 3589 (2013). https://doi.org/10.1021/nn400566d

    Article  CAS  Google Scholar 

  14. R. Wang, G. Li, Y. Dong, Y. Chi, G. Chen, Anal. Chem. 85, 8065 (2013). https://doi.org/10.1021/ac401880h

    Article  CAS  Google Scholar 

  15. M.S. Wooldridge, Prog. Energy and Combust. Sci. 24, 63 (1998). https://doi.org/10.1016/S03601285(97)00024-5

    Article  CAS  Google Scholar 

  16. P. Roth, Proc. Combust. Inst. 31, 1773 (2007). https://doi.org/10.1016/j.proci.2006.08.118

    Article  CAS  Google Scholar 

  17. W.M. Merchan, A.V. Saveliev, L. Kennedy, W.C. Jimenez, Prog. Energy Combust. Sci. 36, 696 (2010). https://doi.org/10.1016/j.pecs.2010.02.005

    Article  CAS  Google Scholar 

  18. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. Teo, G. Amaratunga, K. Iimura, J. of Applied Phy. 92, 2783 (2002). https://doi.org/10.1063/1.1498884

    Article  CAS  Google Scholar 

  19. D. Fu, X. Liu, X. Lin, T. Li, H. Jia, B. Xu, J. Mater. Sci. 42, 3805 (2007). https://doi.org/10.1007/s10853-006-1354-3

    Article  CAS  Google Scholar 

  20. Y. Yang, X. Liu, X. Guo, H. Wen, B. Xu, J. Nanopart. Res. 13, 1979 (2011). https://doi.org/10.1007/s11051-010-9951-0

    Article  CAS  Google Scholar 

  21. R. Borgohain, J. Yang, J.P. Selegue, D.Y. Kim, Carbon 66, 272 (2014). https://doi.org/10.1016/j.carbon.2013.09.001

    Article  CAS  Google Scholar 

  22. D. Jiang, L. Mingming, W. Yong, Green Chem. 18, 4824 (2016). https://doi.org/10.1039/C6GC01172A

    Article  CAS  Google Scholar 

  23. P. Chylek, S.G. Jennings, R. Pinnick, 2003 Encyc. Atmos. Sci. 2093 Doi: https://doi.org/10.1016/B0-12-227090-8/00375-4

  24. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F.D. Monte, Chem. Soc. Rev. 42, 794 (2013). https://doi.org/10.1039/C2CS35353A

    Article  CAS  Google Scholar 

  25. M. Antonietti, N. Fechler, T.P. Fellinger, Chem. Mater. 26, 196 (2014). https://doi.org/10.1021/cm402239e

    Article  CAS  Google Scholar 

  26. Y.Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, ACS Sustainable Chem. Eng. 3, 1419 (2015). https://doi.org/10.1021/acssuschemeng.5b00340

    Article  CAS  Google Scholar 

  27. D. Mohapatra, S. Badrayyana, S. Parida, Materials Chem. and Phy. 174, 112 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.057

    Article  CAS  Google Scholar 

  28. V. Sahu, R.B. Marichi, G. Singh, R.K. Sharma, Electro. Acta 240, 146 (2017). https://doi.org/10.1016/j.electacta.2017.04.058

    Article  CAS  Google Scholar 

  29. B. Zhang, D. Wang, B. Yu, F. Zhou, W. Liu, RSC Adv. 4, 2586 (2014). https://doi.org/10.1039/C3RA42507J

    Article  CAS  Google Scholar 

  30. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, Carbon 45(8), 1686 (2007). https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  31. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon 45(9), 1757 (2007). https://doi.org/10.1016/j.carbon.2007.05.004

    Article  CAS  Google Scholar 

  32. J. Wang, N. Salim, B. Fox, N. Stanford, Applied Mate. Today 9, 196 (2017). https://doi.org/10.1016/j.apmt.2017.07.010

    Article  Google Scholar 

  33. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Nanopart. Res. 22, 267 (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  CAS  Google Scholar 

  34. N.S. Yadav, N. Singh, A. Kumar, J Mater Sci: Mater Electron 29, 6853 (2018). https://doi.org/10.1007/s10854-018-8672-5

    Article  CAS  Google Scholar 

  35. L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, S. Chen, Chem. of Mater. 21, 2803 (2009). https://doi.org/10.1021/cm900709w

    Article  CAS  Google Scholar 

  36. N. Puvvada, B.N. Kumar, S. Konar, H. Kalita, M. Mandal, A. Pathak, Sci Technol Adv Mater. 13, 045008 (2012). https://doi.org/10.1088/1468-6996/13/4/045008

    Article  CAS  Google Scholar 

  37. D. Potphode, C, S. Sharma 2020 Journal of Energy Storage 27,101114 https://doi.org/10.1016/j.est.2019.101114

  38. R. Tailor, Y. K. Vijay, M. Bafna, in Environmental Emissions, ed. By R. Viskup (intech open, United Kingdom, 2020), p. 72386 https://doi.org/10.5772/intechopen.92389

  39. M.S. Dresselhaus, A. Jorio, R. Saito, Annual Review of Cond. Matter Phy. 1, 89 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  CAS  Google Scholar 

  40. D Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T.W. Clyne, G.A.J Amaratunga, Chem. Phy. Lett. 373, 52 (2003) https://doi.org/10.1016/S0009-2614(03)00523-2

  41. A.C. Ferrari, Solid State Comm. 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  42. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007). https://doi.org/10.1039/B613962K

    Article  CAS  Google Scholar 

  43. J.S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, M.S. Dresselhaus, Carbon 47, Issue 5, 1303 (2009 https://doi.org/10.1016/j.carbon.2009.01.009

  44. D.D. Potphode, S.P. Mishra, P. Sivaraman, M. Patri, Electrochim. Acta 230, 29 (2017). https://doi.org/10.1016/j.electacta.2017.01.168

    Article  CAS  Google Scholar 

  45. B. A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon The Journal of Physical Chemistry C 122 (1), 194 (2018) https://doi.org/10.1021/acs.jpcc.7b10582

  46. W.C. Chen, T.C. Wen, H. Teng, Electrochim. Acta 48, 641 (2003). https://doi.org/10.2478/s11696-013-0475-9

    Article  CAS  Google Scholar 

  47. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Electrochim. Acta 92, 183 (2013). https://doi.org/10.1016/j.electacta.2012.12.092

    Article  CAS  Google Scholar 

  48. Y. Huang, in Activated Carbon Fiber and Textiles. ed. by J.Y. Chen, A. Smith (Woodhead Publishing, Cambridge, 2017), p. 181

    Chapter  Google Scholar 

  49. R.S. Neves, E.D. Robertis, A. Motheo, Appl. Surf. Sci. 253, 1379 (2006). https://doi.org/10.1016/J.APSUSC.2006.02.010

    Article  CAS  Google Scholar 

  50. M.H. Martin, A. Lasia, Electrochim. Acta 56(23), 8058 (2011). https://doi.org/10.1016/j.electacta.2011.02.068

    Article  CAS  Google Scholar 

  51. V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, 1st edn. (John Wiley & amp. Sons Inc, New Jersey, 2012), pp. 1–345

    Book  Google Scholar 

  52. Y.R. Nian, H. Teng, J. Electrochem. Soc. 149, A1008 (2002). https://doi.org/10.1149/1.1490535

    Article  CAS  Google Scholar 

  53. C.M. Yang, J.B. Ju, J.K. Lee, W. Cho, B.W. Cho, Electrochim. Acta 50, 1813 (2005). https://doi.org/10.1016/j.electacta.2004.08.033

    Article  CAS  Google Scholar 

  54. J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, Carbon 61, 190 (2013). https://doi.org/10.1016/j.carbon.2013.04.084

    Article  CAS  Google Scholar 

  55. M.P. Bondarde, P.H. Wadekar, S. Some, J. of Energy Storage 32, 101783 (2020). https://doi.org/10.1016/j.est.2020.101783

    Article  Google Scholar 

  56. S. Jung, Y. Myung, G.S. Das, A. Bhatnagar, J.W. Park, K.M. Tripathi, T.Y. Kim, New J. Chem. 44, 7369 (2020). https://doi.org/10.1039/D0NJ00699H

    Article  CAS  Google Scholar 

  57. B. Shaku, T.P. Mofokeng, T.H. Mongwe, N.J. Coville, K.I. Ozoemena, M.S.M. Nkadimeng, Electroanalysis 32, 2946 (2020). https://doi.org/10.1002/elan.202060383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge access to the experimental facilities at Material Research Centre (MRC), MNIT Jaipur. Kuldeep Mishra acknowledges the funding (File No YSS/2015/001234) from Science and Engineering Research Board (SERB) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

All the authors agree to participate in this research communication.

Consent for publication

The authors have consented to the submission of the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Mishra, K., Sharma, S.K. et al. Performance studies of an electric double-layer capacitor (EDLC) fabricated using edible oil-derived activated carbon. J Mater Sci: Mater Electron 33, 8920–8934 (2022). https://doi.org/10.1007/s10854-021-06978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06978-0

Navigation