Skip to main content
Log in

Boron doped SiC thin film on Silicon synthesized from polycarbosilane: a new lead free material for applications in piezosensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we are reporting for the first time, the piezosensing characterisations of the SiC thin film on silicon, synthesized from boron containing Liquid Polycarbosilane (PCS) as a precursor deposited by Modified Chemical Vapour Deposition (MoCVD) technique followed by the structural characterisation of the film. Comparison was done on the result of the both undoped and doped SiC thin film to highlight the effect of boron doping on the piezo property of the SiC. Interestingly, it was observed that piezoelectric coefficient (d33) of the boron doped SiC thin film was substantially higher (21.33 pm/V) than the undoped SiC thin film (16.21 pm/V). The enhancement in d33 was analysed considering the polarisation inside the thin film created by boron doping. The result shows a promising boron doped SiC thin film material for the application in high temperature piezo sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.A. Parks, S. Zhang, B.T. Tittmann, High-temperature (>500 °C) ultrasonic transducers: an experimental comparison among three candidate piezoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1010–1015 (2013)

    Article  Google Scholar 

  2. R. Kazys, A. Voleisis, B. Voleisine, High Temp. Ultrason. Transducer: Review Ultragarsas J. 63, 7–17 (2008)

    Google Scholar 

  3. Parks D.A., Tittmann B.T. and Kropf M.M.: Aluminum Nitride as a High Temperature Transducer, in Review of Progress of Quantitative Nondestructive Evaluation, eds. D.O. Thompson and D.E. Chimenti, (American Institute of Physics 1211, Melville NY) 29, 1029–1034 (2010)

  4. K. Matsuo, R.J. Xie, Y. Akimune, T. Sugiyama, Preparation of lead-free Sr2-xCaxNaNb5O15 (x = 0.1)-based piezoceramics with tungsten bronze structure. J. Ceram. Soc. Jpn. 110, 491–494 (2002)

    Article  CAS  Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. M.A. Fraga, H. Furlan, R.S. Pessoa, M. Massi, Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsyst Technol 20, 9–21 (2014)

    Article  CAS  Google Scholar 

  7. Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2017)

    Article  CAS  Google Scholar 

  8. Gupta S. and Priya S 2013 High thermal stability of piezoelectric properties in (Na0.5Bi0.5TiO3)x–(BaTiO3)y–(Na0.5K0.5NbO3)1−x−y ceramics. Appl. Phys. Lett. 102: e012906

  9. A.R. Atwell, R.S. Okojie, K.T. Kornegay, S.L. Roberson, A. Beliveau, Simulation, fabrication and testing of bulk micromachined 6HSiC high-g piezoresistive accelerometers. Sens Actuators A Phys. 104, 11–18 (2008)

    Article  Google Scholar 

  10. R.S. Okojie, A.R. Atwell, K.T. Kornegay, S.L. Roberson, A. Beliveau, Design considerations for bulk micromachined 6H-SiC high-G piezoresistive accelerometers. The fifteenth IEEE Int. Conf. on Micro Electro Mech. Syst. 1, 618–622 (2002)

    Google Scholar 

  11. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc IEEE 86, 1594–1609 (1998)

    Article  CAS  Google Scholar 

  12. R.S. Okojie, D. Lukco, C. Blaha, V. Nguyen, E. Savrun, Zero offset drift suppression in SiC pressure sensors at 600°C. IEEE Sens. (2010). https://doi.org/10.1109/ICSENS.2010.5690714

    Article  Google Scholar 

  13. A.A. Ned, R.S. Okojie, A.D. Kurtz, 6H-SiC pressure sensor operation at 600_C. Fourth Int. High Temp. Electron. Conf. (1998). https://doi.org/10.1109/HITEC.1998.676799

    Article  Google Scholar 

  14. M.A. Fraga, H. Furlan, M. Massi, I.C. Oliveira, L.L. Koberstein, Fabrication and characterization of a SiC/SiO2/Si piezoresistive pressure sensor. Proc Eng 5, 609–612 (2010)

    Article  Google Scholar 

  15. K. Kundu, J. Chakraborty, S. Kumar, N.E. Prasad, R. Banerjee, Enhancement of optical properties of boron doped SiC thin film –A SiC QD effect. Bulletin of Mater. sc. 43, 250 (2020)

    Article  CAS  Google Scholar 

  16. S. Agathopoulos, Influence of synthesis process on the dielectric properties of B-doped SiC powders. Ceram. Int. 38, 3309–3315 (2012)

    Article  CAS  Google Scholar 

  17. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil. Mag. 1, 34–46 (1956)

    Article  CAS  Google Scholar 

  18. F. Filippo, R. Enzo, L. Laura, F. Naoki, S. Giancarlo, Visible and Infra-red Light Emission in Boron-Doped Wurtzite Silicon Nanowires. Sci. Rep. 4, 3603 (2014)

    Google Scholar 

  19. P. Lu, Q. Huang, A. Mukherjee, Y.L. Hsieh, Effects of polymer matrices to the formation of silicon carbide (SiC) nanoporous fibers and nanowires under carbothermal reduction. J. Mater. Chem. 21, 1005 (2011)

    Article  CAS  Google Scholar 

  20. Y. Cheng, J. Zhang, Y. Zhang, X. Chen, Y. Wang, H. Ma, X. Cao, Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates. Eur. J. Inorg. Chem. 28, 4248–4254 (2009)

    Article  Google Scholar 

  21. A. Tamayo, J. Rubio, R. Pena-alonso, F. Rubio, J.L. Oteo, Gradient pore size distributions in porous silicon oxycarbide materials. J. Eur Ceram Soc. 28, 1871 (2008)

    Article  CAS  Google Scholar 

  22. H. Sato, I. Shoji, J. Suda, T. Kondo, Accurate Measurements of Second-order Nonlinear-optical Coefficients of Silicon Carbide. Mater. Sci. Forum 615–617, 315–318 (2009)

    Article  Google Scholar 

  23. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, Rosseti jr. G.A. and Rodel J. , BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, e041305 (2017)

    Article  Google Scholar 

  24. J.L. Sánchez-Rojas, J. Hernando, A. Ababneh, U. Schmid, J. Olivares, M. Clement, E. Iborra, Advanced determination of piezoelectric properties of AlN thin films on silicon substrates. IEEE Int. Ultrason. Symposium Proc. (2008). https://doi.org/10.1109/ULTSYM.2008.0218

    Article  Google Scholar 

  25. I.K. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz, A.L. Kholkin, Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, e235703 (2010)

    Article  Google Scholar 

  26. S. Yu, Q. Rice, T. Neupane, B. Tabibi, Q. Lib, F.J. Seo, Piezoelectricity enhancement and bandstructure modification of atomic defect-mediated MoS2 monolayer. Phys. Chem. Chem. Phys 19, 24271 (2017)

    Article  CAS  Google Scholar 

  27. Sokrates T., Pantelides and Porter L.M. 2006 Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs – Challenges and Advances. Mater. Sci. Forum 935–948

  28. Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, Defect engineering of lead-free piezoelectrics with high piezoelectric properties and temperature-stability. ACS Appl. Mater. Interfaces 8(14), 9231–9241 (2016)

    Article  CAS  Google Scholar 

  29. I. Chinya, A. Pal, S. Sen, Polyglycolated zinc ferrite incorporated poly(vinylidene fluoride)(PVDF) composites with enhanced piezoelectric response. J. Alloys Compd. 722, 829 (2017)

    Article  CAS  Google Scholar 

  30. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behaviour in Ba doped BiFeO3. Ceram. Int. 38, 3829 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO for supplying the LPCS and Aeronautics Research and Development Board for sponsoring the research under grant no ARDB-012031838/M/I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, K., Ghosh, A., Pratihar, S. et al. Boron doped SiC thin film on Silicon synthesized from polycarbosilane: a new lead free material for applications in piezosensors. J Mater Sci: Mater Electron 32, 25108–25117 (2021). https://doi.org/10.1007/s10854-021-06966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06966-4

Navigation