Skip to main content
Log in

Implementation of quartz crystal microbalance with polystyrene layer modification for bovine serum albumin adsorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Quartz crystal microbalance (QCM) sensor and bioactive-modified thin films of polystyrene (PS) have been successfully and respectively fabricated using resistance evaporation technique. The films’ quality, bovine serum albumin (BSA) adsorption characteristic, and sensor performance were investigated. Firstly, the aluminum and silver layers were, respectively, sputtered on the At-cut quartz to form QCM sensors and characterized by atomic force microscopy. The aluminum layer exhibits much greater roughness than silver layer. The QCM sensor coated with silver electrode layer of 300 nm exhibits the resonance frequency around 10 MHz and more superior Q-factor around 8000. Then, the morphology of the deposited PS membranes were analyzed by positive fluorescence microscope, attenuated total reflectance Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and water contact angle methods. The island-like PS membranes were achieved and used as sensitive layer for BSA adsorption. A ~ 186 Hz drop in the PS-based QCM sensor resonance frequency was observed when the sensor exposed to the BSA solution that dissolved in pure phosphate buffer saline. Finally, the QCM sensor has good linear sensitivity of ~ 87 Hz/(100 μg/mL) to different BSA concentrations from 50 μg/mL to 500 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Arnau, A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1), 370–411 (2008)

    Article  Google Scholar 

  2. Y. Nariman, T. Nathalie, Probing the interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring. Front. Chem. 4, 46 (2016)

    Google Scholar 

  3. L. Palmqvist, K. Holmberg, Dispersant adsorption and viscoelasticity of alumina suspensions measured by quartz crystal microbalance with dissipation monitoring and in situ dynamic rheology. Langmuir 24(18), 9989–9996 (2008)

    Article  CAS  Google Scholar 

  4. L. Gan, M. Zhou, D. Yang, X. Qiu, Aggregation and adsorption behaviors of carboxymethylated lignin (CML) in aqueous solution. Holzforschung 67(4), 379–385 (2013)

    Article  CAS  Google Scholar 

  5. N.L. Hong, W. Yu, Y.Y. Xue, W.M. Zeng, J.H. Huang, W.Q. Xie, X.Q. Qiu, Y. Li, A novel and highly efficient polymerization of sulfomethylated alkaline lignins via alkyl chain cross-linking method. Holzforschung 70(4), 297–304 (2016)

    Article  CAS  Google Scholar 

  6. N.L. Hong, X.Q. Qiu, Structure-adsorption behavior-dispersion property relationship of alkyl chain cross-linked lignosulfonate with different molecular weights. ACS Omega 5(10), 4836–4843 (2020)

    Article  CAS  Google Scholar 

  7. A.W. Lu, A. Czanderna, Townshend, applications of piezoelectric quartz crystal microbalances. Anal. Chim. Acta 199(1), 279–279 (1987)

    Article  Google Scholar 

  8. H. Aizawa, S.I. Kusakari, K. Yamada, K. Noda, H. Habe, Development of organic gas sensor using quartz crystal microbalance coated with plasma-polymerized films. Sens. Mater. 32(3), 1123–1131 (2020)

    Google Scholar 

  9. P.L. Konash, G.J. Bastiaans, Piezoelectric crystals as detectors in liquid chromatography. Anal. Chem. 52(12), 1929–1931 (1980)

    Article  CAS  Google Scholar 

  10. K.K. Kanazawa, J.G. Gordon II., The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 175, 99–105 (1985)

    Article  CAS  Google Scholar 

  11. H. Eun, Y. Umezawa, Quartz crystal microbalance for selenite sensing based on growth of cadmium selenite crystals immobilized on a monolayer of phosphorylated 11-mercapto-1-undecanol. Microchim. Acta 131(3), 177–185 (1999)

    Article  CAS  Google Scholar 

  12. M. Michalzik, R. Wilke, S. Buettgenbach, Miniaturized QCM-based flow system for immunosensor application in liquid. Sens. Actuators B Chem. 111(11), 410–415 (2005)

    Article  Google Scholar 

  13. E.E. María, S. Sánchez, A. Jiménez, Virgin olive oil sensory evaluation by an artificial olfactory system, based on quartz crystal microbalance (QCM) sensors. Sens. Actuators B Chem. 147(1), 159–164 (2010)

    Article  Google Scholar 

  14. D.J. Li, J.P. Wang, R.H. Wang, Y.B. Li, D. Abi-Ghanem, L. Berghman, B. Hargis, H.G. Lu, A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosens. Bioelectron. 26(10), 4146–4154 (2011)

    Article  CAS  Google Scholar 

  15. M.K. Mustafa, A. Nabok, D. Parkinson, I.E. Tothill, A. Tsargorodskaya, Detection of β-amyloid peptide (1–16) and amyloid precursor protein (APP770) using spectroscopic ellipsometry and QCM techniques: A step forward towards Alzheimers disease diagnostics. Biosens. Bioelectron. 26(4), 1332–1336 (2011)

    Article  Google Scholar 

  16. N. Kim, S.H. Son, C.T. Kim, Y.J. Cho, C.J. Kim, W.Y. Kim, Direct-binding quartz crystal microbalance immunosensor to detect carp metallothionein. Sens. Actuators B Chem. 157(2), 627–634 (2011)

    Article  CAS  Google Scholar 

  17. Y.F. Wu, G.Y. Li, Y.Z. Hong, X.L. Zhao, P.I. Reyes, Y.C. Lu, Rapid and dynamic detection of antimicrobial treatment response using spectral amplitude modulation in MZO nanostructure-modified quartz crystal microbalance. J. Microbiol. Meth. 178, 106071 (2020)

    Article  CAS  Google Scholar 

  18. H.J. Lim, T. Saha, B.T. Tey, W.S. Tan, C.W. Ooi, Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron. 168, 112513 (2020)

    Article  CAS  Google Scholar 

  19. M.Z. Atashbar, B. Bejcek, A. Vijh, S. Singamaneni, QCM biosensor with ultra thin polymer film. Sens. Actuators B Chem. 107(2), 945–951 (2005)

    Article  CAS  Google Scholar 

  20. Z.C. Pei, H. Anderson, T. Aastrup, O. Ramstrom, Study of real-time lectin-carbohydrate interactions on the surface of a quartz crystal microbalance. Biosens. Bioelectron. 21(1), 60–66 (2005)

    Article  CAS  Google Scholar 

  21. S.P. Sakti, F. Wahyuni, U.P. Juswono, Development of QCM immunosensor with small sample solution for detection of MMP-3 antibody. Sens. Transducers 149(2), 143–148 (2013)

    CAS  Google Scholar 

  22. B. Pejcic, C. Barton, E. Crooke, P. Eadington, E. Jee, A. Ross, Hydrocarbon sensing. Part 1: some important aspects about sensitivity of a polymer-coated quartz crystal microbalance in the aqueous phase. Sens. Actuators B Chem. 135(2), 436–443 (2009)

    Article  CAS  Google Scholar 

  23. J. Kobayashi, Y. Arisaka, N. Yui, Y. Akiyama, M. Yamato, T. Okano, Effect of temperature changes on serum protein adsorption on thermoresponsive cell-culture surfaces monitored by a quartz crystal microbalance with dissipation. Int. J. Mol. Sci. 19(5), 1516 (2018)

    Article  Google Scholar 

  24. S.P. Sakti, L. Amaliya, N.F. Khusnah, M. Masruroh, Effect of UV radiation duration and molecular weight to hydrophobicity and surface roughness of polystyrene coating on QCM sensor. J. Teknol 79(3), 61–67 (2017)

    Google Scholar 

  25. S.P. Sakti, E. Rahmawati, F. Robiandi, Solvent effect on polystyrene surface roughness on top of QCM sensor. AIP Conf. Proc. 1719, 030017 (2016)

    Article  Google Scholar 

  26. M. Sun, B. Ding, J.Y. Yu, Sensitive metal ion sensors based on fibrous polystyrene membranes modified by polyethyleneimine. RSC Adv. 2(4), 1373–1378 (2012)

    Article  CAS  Google Scholar 

  27. S.P. Sakti, C. Nur, S.P. Ayu, M.C. Padaga, Aulanni’am A, , Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection. J. Sens. 2016, 1807647 (2016)

    Article  Google Scholar 

  28. C. Turgut, G. Sinha, L. Mether, J. Lahtinen, K. Nordlund, M. Belmahi, P. Philipp, Experimental and numerical study of submonolayer sputter deposition of polystyrene fragments on silver for the storing matter technique. Anal. Chem. 86, 11217–11225 (2014)

    Article  CAS  Google Scholar 

  29. C. Turgut, T. Wirtz, M. Belmahi, P. Philipp, Fragmentation of polystyrene during sputter deposition in the storing matter instrument. Surf. Interface Anal. 46, 357–359 (2014)

    Article  CAS  Google Scholar 

  30. S. Wehner, K. Wondraczek, D. Johannsmann, A. Bund, Roughness-induced acoustic second-harmonic generation during electrochemical metal deposition on the quartz-crystal microbalance. Langmuir 20(6), 2356–2360 (2004)

    Article  CAS  Google Scholar 

  31. H.J. Janshoff, C. Galla, Steinem, the quartz-crystal microbalance in life science. Angew. Chem. Int. Ed. 39, 4004–4032 (2000)

    Article  CAS  Google Scholar 

  32. Y. Josse, S.J. Lee, R.W. Martin, Cernosek, analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 70(2), 237–247 (1998)

    Article  CAS  Google Scholar 

  33. B.K. Gan, M.M.M. Bilek, A. Kondyurin, K. Mizuno, D.R. Mckenzie, Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nuclear Instrum. Methods Phys. Res. Sect. B 247(2), 254–260 (2006)

    Article  CAS  Google Scholar 

  34. D.M. Bubb, M.R. Papantonakis, J.S. Horwitz, R.F. Haglund, B. Toftmann, R.A. Mcgill, D.B. Chrisey, Vapor deposition of polystyrene thin films by intense laser vibrational excitation. Chem. Phys. Lett. 352, 135–139 (2002)

    Article  CAS  Google Scholar 

  35. A.J. Choudhury, H. Kakati, A.R. Pal, D.S. Patil, J. Chutia, Synthesis and characterization of plasma polymerized styrene films by rf discharge. J Phys: Conf Ser. 208(1), 012104 (2010)

    Google Scholar 

  36. D. Merche, C. Poleunis, P. Bertrand, M. Sferrazza, F. Reniers, Synthesis of polystyrene thin films by means of an atmospheric-pressure plasma torch and a dielectric barrier discharge. IEEE Trans. Plasma Sci. 37(6), 951–960 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Scientific Research Foundation of China West Normal University (No. 20E026) to Z. L. Xu. The authors also acknowledge Southwest Jiaotong University’s Laboratory of Biosensing and Microelectronics for allowing the use of the cleanroom facilities to fabricate the SAW devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangliang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., He, Z. Implementation of quartz crystal microbalance with polystyrene layer modification for bovine serum albumin adsorption. J Mater Sci: Mater Electron 32, 25279–25287 (2021). https://doi.org/10.1007/s10854-021-06985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06985-1

Navigation