Skip to main content
Log in

Experimental and theoretical investigations of propyl para-hydroxybenzoate crystal for optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Propyl para-hydroxybenzoate (PHB) known as Propylparaben is an organic family that single crystal is grown by solvent evaporation process with a solvent like methanol. The value of unit cell geometry and the crystalline system with space group nature are estimated from the single-crystal XRD study. From the optical spectra, the lower absorption wavelength edge is measured using the visible optical spectrum of range 200–1200 nm. From the absorption edge value, different optical parameters such as band gap, extinction coefficient with absorption, optical and electrical conductivity, Urbach energy, and susceptibility values are measured. Also, the grown PHB crystals’ different dispersion parameters and strength of oscillator are also evaluated by using Wemple Di-Domenico single oscillator method. Third-order nonlinear parameters such as refractive index, nonlinear absorption coefficient, and nonlinear susceptibility are evaluated as 5.99 × 10−9cm2/W, 3.41 × 10−4 cm/W, and 5.76 × 10−6 esu by using the z-scan method. The microhardness analysis and different mechanical properties such as elastic stiffness constant, yield strength, fracture toughness, and Brittleness index are also estimated. The basic important solid-state properties such as the energy of plasma, Penn, and Fermi gap and the value of molecular electronic polarizability are measured and compared from various methods as the coupled dipole method, Clausius–Mossotti relation, and Lorentz equation. The intermolecular interaction of the PHB molecule is confirmed by the Hirshfeld surface study, and their percentage is evaluated by using a fingerprint plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, 1st edn. (Wiley, New York, 1991)

    Google Scholar 

  2. J. Zyss, Molecular Nonlinear Optics Materials, Physics and Devices (Academic Press, New York, 1994)

    Google Scholar 

  3. C.C. Evans, M.B. Beucher, R. Masse, J.F. Nicoud, Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem. Mater. 10, 847–854 (1998). https://doi.org/10.1021/cm970618g

    Article  CAS  Google Scholar 

  4. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, 1st edn. (Academic Press, London, 1987)

    Google Scholar 

  5. P.A. Fleitz, Nonlinear optics of organic molecules and polymers. Opt. Eng. 36, 2622 (1997). https://doi.org/10.1117/1.601490

    Article  Google Scholar 

  6. T. Kamalesh, P. Karuppasamy, C. Senthilkumar, M.S. Pandian, P. Ramasamy, S. Verma, Growth, structural, Hirshfeld surface, optical, laser damage threshold, dielectric and chemical etching analysis of 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) single crystal. J. Mater. Sci. Mater. Electron. 31, 373–386 (2020). https://doi.org/10.1007/s10854-019-02536-x

    Article  CAS  Google Scholar 

  7. D. Rezzonico, S.J. Kwon, H. Figi, O.P. Kwon, M. Jazbinsek, P. Günter, Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials. J. Chem. Phys. 128, 124713 (2008). https://doi.org/10.1063/1.2890964

    Article  CAS  Google Scholar 

  8. B.J. Coe, S.P. Foxon, R.A. Pilkington, S. Sánchez, D. Whittaker, K. Clays, G. Depotter, B.S. Brunschwig, Nonlinear optical chromophores with two ferrocenyl, octamethylferrocenyl, or 4(Diphenylamino)phenyl groups attached to rhenium(I) or zinc(II) Centers. Organometallics 34, 1701–1715 (2015). https://doi.org/10.1021/acs.organomet.5b00193

    Article  CAS  Google Scholar 

  9. B.J. Coe, J.A. Harris, A.K. Clays, G. Olbrechts, A. Persoons, J.T. Hupp, Quadratic nonlinear optical properties of N-aryl stilbazolium dyes. Adv. Funct. Mater. 12, 110–116 (2002). https://doi.org/10.1002/1616-3028(20020201)12:23.0.co;2-y

    Article  CAS  Google Scholar 

  10. A. John Kiran, H.C. Kim, K. Kim, F. Rotermund, H.J. Ravindra, S.M. Dharmaprakash, H. Lim, Superior characteristics of organic chalcone single crystals as efficient nonlinear optical material. Appl. Phys. Lett. 92, 113307 (2008). https://doi.org/10.1063/1.2896640

    Article  CAS  Google Scholar 

  11. K. Thirupugalmani, M. Venkatesh, S. Karthick, K.K. Maurya, N. Vijayan, A.K. Chaudhary, S. Brahadeeswaran, Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation. CrystEngComm 19, 2623–2631 (2017). https://doi.org/10.1039/C7CE00228A

    Article  CAS  Google Scholar 

  12. S. Vasuki, R.T. Karunakaran, G. Shanmugam, Growth and physicochemical studies on 2-amino 5-bromopyridinium 4-carboxybutanoate: an organic NLO single crystal. J. Mater. Sci. Mater. Electron. 28, 12916–12928 (2017). https://doi.org/10.1007/s10854-017-7122-0

    Article  CAS  Google Scholar 

  13. L.R. Dalton, P.A. Sullivan, D.H. Bale, Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110, 25–55 (2010). https://doi.org/10.1021/cr9000429

    Article  CAS  Google Scholar 

  14. B.J. Coe, S.P. Foxon, M. Helliwell, D. Rusanova, B.S. Brunschwig, K. Clays, G. Depotter, M. Nyk, M. Samoc, D. Wawrzynczyk et al., Heptametallic, octupolar nonlinear optical chromophores with six ferrocenyl substituents. Chem. Eur. J. 19, 6613–6629 (2013). https://doi.org/10.1002/chem.201204453

    Article  CAS  Google Scholar 

  15. L.R. Dalton, P. Günter, M. Jazbinsek, O.P. Kwon, P.A. Sullivan, Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  16. S.R. Marder, B. Kippelen, A.K.-Y. Jen, N. Peyghambarian, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997). https://doi.org/10.1038/42190

    Article  CAS  Google Scholar 

  17. E. Raju, P. Jayaprakash, G. Vinitha, N. Saradha Devi, S. Kumaresan, Growth and characterization of 2-aminopyridinium malonate single crystal for photonic device applications. J. Mater. Sci. Mater. Electron. 32, 21155–21163 (2021). https://doi.org/10.1007/s10854-021-06614-x

    Article  CAS  Google Scholar 

  18. S. Vediyappan, A. Raja, R.M. Jauhar, R. Kasthuri, V. Vijayan, M.S. Pandian, R. Perumalsamy, V. Gandhiraj, Synthesis, crystal growth, structure, crystalline perfection, thermal, linear, and nonlinear optical investigations on 2-amino-5-nitropyridine 4-chlorobenzoic acid (1:1): a novel organic single crystal for NLO and optical limiting applications. J. Mater. Sci. Mater. Electron. 32, 15026–15045 (2021). https://doi.org/10.1007/s10854-021-06056-5

    Article  CAS  Google Scholar 

  19. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, Growth and characterization of organic material 3,4-dimethoxybenzaldehyde-2,4-dinitroaniline single crystal. J. Mater. Sci. Mater. Electron. 32, 3232–3246 (2021). https://doi.org/10.1007/s10854-020-05072-1

    Article  CAS  Google Scholar 

  20. J. Wu, Z. Li, J. Luo, A.K.-Y. Jen, High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C 8, 15009–15026 (2020). https://doi.org/10.1039/D0TC03224G

    Article  CAS  Google Scholar 

  21. K. Anitha, M. Subha, M. Tamil Elakkiya, Synthesis, growth, structural, optical, thermal and NLO studies of new organic single crystal: 3-hydroxy pyridinium 2-hydroxy benzoate. J. Mol. Struct. 1244, 130850 (2021). https://doi.org/10.1016/j.molstruc.2021.130850

    Article  CAS  Google Scholar 

  22. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 27, 834–842 (2016). https://doi.org/10.1007/s10854-015-3824-3

    Article  CAS  Google Scholar 

  23. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electron. 26, 5043–5051 (2015). https://doi.org/10.1007/s10854-015-3024-1

    Article  CAS  Google Scholar 

  24. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Nanostructures, Novel facile surfactant-free preparation and characterization. Int. J. Appl. Ceram. Technol. 13, 108–115 (2016). https://doi.org/10.1111/ijac.12393

    Article  CAS  Google Scholar 

  25. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J. Mater. Sci. Mater. Electron. 27, 3918–3928 (2016). https://doi.org/10.1007/s10854-015-4243-1

    Article  CAS  Google Scholar 

  26. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017). https://doi.org/10.1016/j.molliq.2017.02.002

    Article  CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021). https://doi.org/10.1016/j.seppur.2021.118667

    Article  CAS  Google Scholar 

  28. H. Safajou, M. Ghanbari, O. Amiri, H. Khojasteh, F. Namvar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water. Int. J. Hydrog. Energy 46, 20534–20546 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.175

    Article  CAS  Google Scholar 

  29. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021). https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  CAS  Google Scholar 

  30. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021). https://doi.org/10.1016/j.ceramint.2020.12.018

    Article  CAS  Google Scholar 

  31. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron. 31, 17332–17338 (2020). https://doi.org/10.1007/s10854-020-04289-4

    Article  CAS  Google Scholar 

  32. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, Growth and characterization of organic material 3,4,5-trimethoxybenzaldehyde single crystal for optical applications. Opt. Laser Technol. 115, 500–507 (2019). https://doi.org/10.1016/j.optlastec.2019.02.054

    Article  CAS  Google Scholar 

  33. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinrich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  Google Scholar 

  34. A.M. Fraind, G. Sini, C. Risko, L.R. Ryzhkov, J.-L. Brédas, J.D. Tovar, Charge delocalization through benzene, naphthalene, and anthracene bridges in π-conjugated oligomers: an experimental and quantum chemical study. J. Phys. Chem. B 117, 6304–6317 (2013). https://doi.org/10.1021/jp401448a

    Article  CAS  Google Scholar 

  35. Li. Wang, J. Ye, H. Wang, H. Xie, Y. Qiu, The novel link between planar möbius aromatic and third order nonlinear optical properties of metal–bridged polycyclic complexes. Sci. Rep. 7, 10182 (2017). https://doi.org/10.1038/s41598-017-10739-7

    Article  CAS  Google Scholar 

  36. B. Mohanbabu, R. Bharathikannan, G. Siva, Structural, optical, dielectric, mechanical and Z-scan NLO studies of charge transfer complex crystal: 3-aminopyridinum-4-hydroxy benzoate. J. Mater. Sci. Mater. Electron. 28, 13740–13749 (2017). https://doi.org/10.1007/s10854-017-7218-6

    Article  CAS  Google Scholar 

  37. M. Krishnakumar, S. Karthick, G. Vinitha, K. Thirupugalmani, B. Babu, S. Brahadeeswaran, Growth, structural, linear, nonlinear optical and laser induced damage threshold studies of an organic compound: 2-amino pyridinium-4-hydroxy benzoate. Mater. Lett. 235, 35–38 (2019). https://doi.org/10.1016/j.matlet.2018.09.148

    Article  CAS  Google Scholar 

  38. V. Kannan, S. Brahadeeswaran, Synthesis, growth, thermal, optical and mechanical studies on 2-amino-6-methylpyridinium 4-hydroxybenzoate. J. Therm. Anal. Calorim. 124, 889–898 (2016). https://doi.org/10.1007/s10973-015-5174-z

    Article  CAS  Google Scholar 

  39. P. Sathya, S. Pugazhendhi, R. Gopalakrishnan, Self-assembled supramolecular structure of 4-dimethylaminopyridinium p-hydroxy benzoate pentahydrate: synthesis, growth, optical and biological properties. RSC Adv. 6, 44588–44598 (2016). https://doi.org/10.1039/C6RA00283H

    Article  CAS  Google Scholar 

  40. S. Ambalatharasu, G. Peramaiyan, A. Sankar, R. Mohan Kumar, R. Kanagadurai, Growth, structural and nonlinear optical studies of benzimidazolium p-hydroxybenzoate crystal. Optik 127, 2255–2259 (2016). https://doi.org/10.1016/j.ijleo.2015.11.128

    Article  CAS  Google Scholar 

  41. F. Giordano, R. Bettini, C. Donini, A. Gazzaniga, M.R. Caira, G.G.Z. Zhang, D.J.W. Grant, J. Pharm. Sci. 88, 1210–1216 (1999). https://doi.org/10.1021/js9900452

    Article  CAS  Google Scholar 

  42. Y. Zhou, G. Matsadiq, Y. Wu, J. Xiao, J. Cheng, Propyl 4-hydroxybenzoate. Acta. Crystallogr. E 66, o485 (2010). https://doi.org/10.1107/S1600536810000139

    Article  CAS  Google Scholar 

  43. N. Karunagaran, P. Ramasamy, R. Perumal Ramasamy, Growth and characterization of propyl-para-hydroxybenzoate single crystals. Bull. Mater. Sci. 37, 1461–1469 (2014). https://doi.org/10.1007/s12034-014-0097-z

    Article  CAS  Google Scholar 

  44. N. Karunagaran, P. Ramasamy, Growth of propyl-p-hydroxybenzoate single crystals and its characterizations. AIP Conf. Proc. 1447, 1291 (2012). https://doi.org/10.1063/1.4710485

    Article  CAS  Google Scholar 

  45. S.S.B. Solanki, R.N. Perumal, T. Suthan, Growth and characterization of propyl 4-hydroxybenzoate single crystal by vertical Bridgman technique. Mater. Res. Innov. 22, 144–149 (2017). https://doi.org/10.1080/14328917.2016.1266428

    Article  CAS  Google Scholar 

  46. Y. Sun, Z. Yang, D. Hou, S. Pan, Theoretical investigation on the balance between large band gap and strong SHG response in BMO4 (M = P and As) crystals. RSC Adv. 7, 2804–2809 (2017). https://doi.org/10.1039/C6RA26568E

    Article  CAS  Google Scholar 

  47. P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystal. RSC Adv. 6, 109105–109123 (2016). https://doi.org/10.1039/C6RA21590D

    Article  CAS  Google Scholar 

  48. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B 15, 627–637 (1996). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  49. A. Ashour, H.H. Afifi, S.A. Mahmoud, Effect of some spray pyrolysis parameters on electrical and optical properties of ZnS films. Thin Solid Films 248, 253–256 (1994). https://doi.org/10.1016/0040-6090(94)90020-5

    Article  CAS  Google Scholar 

  50. M. Divya, P. Malliga, P. Sagayaraj, A. Joseph Arul Pragasam, Optical based electrical properties of thiourea borate NLO crystal for electro-optic Q switches. J. Electron. Mater. 48, 5632–5639 (2019). https://doi.org/10.1007/s11664-019-07377-2

    Article  CAS  Google Scholar 

  51. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1325 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  52. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, T.V.R. Rao, P. Mallikarjuna Reddy, Optical electronegativity, bulk modulus and electronic polarizability of materials. Opt. Mater. 14, 355–358 (2000). https://doi.org/10.1016/S0925-3467(00)00004-5

    Article  CAS  Google Scholar 

  53. C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018–2024 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003

    Article  CAS  Google Scholar 

  54. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant incovalent and ionic materials. J. Phys. Rev. B 3, 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  55. M. Okutan, S. Eren San, O. Koysal, F. Yakuphanoglu, Investigation of refractive index dispersion and electrical properties in carbon nano-balls’ doped nematic liquid crystals. Physica B Condens. Matter 362, 180–186 (2005). https://doi.org/10.1016/j.physb.2005.02.009

    Article  CAS  Google Scholar 

  56. M.M. El-Nahass, A.A.M. Farag, E.M. Ibrahim, S. Abd-El-Rahman, Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72, 453–460 (2004). https://doi.org/10.1016/j.vacuum.2003.10.005

    Article  CAS  Google Scholar 

  57. S. Divya, V.P.N. Nampoori, P. Radhakrishnan, A. Mujeeb, Electronic and optical properties of TiO and its polymorphs by Z-scan method. Chin. Phys. B 23, 084203 (2014). https://doi.org/10.1088/1674-1056/23/8/084203

    Article  CAS  Google Scholar 

  58. H.M. Zeyada, M.M. Makhlouf, Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films. Opt. Mater. 54, 181–189 (2016). https://doi.org/10.1016/j.optmat.2016.02.031

    Article  CAS  Google Scholar 

  59. A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, Z. Albataineh, A. Telfah, Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020). https://doi.org/10.1016/j.ijleo.2020.164641

    Article  CAS  Google Scholar 

  60. P.O. Edward, Hand Book of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  61. A.A. Ahmad, Q.M. Al-Bataineh, A.M. Alsaad, T.O. Samara, K.A. Al-izzy, Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films. Physica B Condens. Matter. 593, 412263 (2020). https://doi.org/10.1016/j.physb.2020.412263

    Article  CAS  Google Scholar 

  62. A.M. Al-Amri, S.J. Yaghmour, W.E. Mahmoud, Low temperature growth of metastable cubic CdSe nanocrystals and their photoluminescence properties. J. Cryst. Growth 334(1), 76–79 (2011). https://doi.org/10.1016/j.jcrysgro.2011.07.029

    Article  CAS  Google Scholar 

  63. C. Balarew, R. Duhlev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984). https://doi.org/10.1016/0022-4596(84)90240-8

    Article  Google Scholar 

  64. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    Article  CAS  Google Scholar 

  65. K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Synthesis, growth, and characterization of new stilbazolium derivative single crystal: 2-[2-(2,4-dimethoxy-phenyl)-vinyl]-1-ethyl-pyridinium iodide for third-order NLO applications. J. Mater. Sci. Mater. Electron. 28, 5180–5191 (2017). https://doi.org/10.1007/s10854-016-6174-x

    Article  CAS  Google Scholar 

  66. K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Growth, optical, thermal and mechanical characterization of an organic crystal: brucinium 5-sulfosalicylate trihydrate. Bull. Mater. Sci. 37, 1589–1595 (2014). https://doi.org/10.1007/s12034-014-0721-y

    Article  CAS  Google Scholar 

  67. E.M. Onitsch, Mikroscopia 2, 131–151 (1947)

    Google Scholar 

  68. M. Ravindra, R.P. Bhardwaj, K. Sunil Kumar, V.K. Srivastava, Model based studies of some optical and electronic properties of narrow and wide gap materials. J. Infrared Phys. 21, 369–381 (1981). https://doi.org/10.1016/0020-0891(81)90045-2

    Article  CAS  Google Scholar 

  69. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  70. N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. J. Infrared Phys. 20, 67–69 (1980). https://doi.org/10.1016/0020-0891(80)90009-3

    Article  CAS  Google Scholar 

  71. P. Van Rysselberghe, Remarks concerning the Clausius–Mossotti law. J. Phys. Chem. 36, 1152–1155 (1932). https://doi.org/10.1021/j150334a007

    Article  Google Scholar 

  72. R.R. Reddyy, Y. Nazeer Ahammed, Relationship between refractive index, optical electronegativities and electronic polarizability in alkali halides, III–V, II–VI group semiconductors. Cryst. Res. Technol. 30, 263–266 (1995). https://doi.org/10.1002/crat.2170300224

    Article  Google Scholar 

  73. R.R. Reddy, Y. Nazeer Ahammed, Relation between energy gap and electronic polarizability of ternary chalcopyrites. Infrared Phys. Technol. 37, 505–507 (1996). https://doi.org/10.1016/1350-4495(95)00073-9

    Article  CAS  Google Scholar 

  74. B. Nijboer, M. Ranne, Microscopic derivation of macroscopic van der Waals forces. II. Chem. Phys. Lett. 2, 35–38 (1968). https://doi.org/10.1016/0009-2614(68)80141-1

    Article  CAS  Google Scholar 

  75. R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L. Siva Sankara Reddy, K. Raghavendra Kumar, G. Balakrishnaiah, M. Ravi Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473, 28–35 (2009). https://doi.org/10.1016/j.jallcom.2008.06.037

    Article  CAS  Google Scholar 

  76. P. Vasudevan, S. Sankar, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dehydrate. Optik 124, 4155–4158 (2013). https://doi.org/10.1016/j.ijleo.2012.12.036

    Article  CAS  Google Scholar 

  77. K. Kumar, V. Charles Vincent, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, Investigations of solid state, optical, NLO, dielectric and mechanical behaviour of methyl para-hydroxybenzoate crystal. Optik 226, 165738 (2021). https://doi.org/10.1016/j.ijleo.2020.165738

    Article  CAS  Google Scholar 

  78. S. Vediyappan, R. Arumugam, K. Pichan, R. Kasthuri, S.P. Muthu, R. Perumal, Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications. Appl. Phys. A 123, 780–795 (2017). https://doi.org/10.1007/s00339-017-1394-3

    Article  CAS  Google Scholar 

  79. J. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1976)

    Google Scholar 

  80. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer (Version 3.0). University of Western Australia, 2012

  81. M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009). https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Selvaraju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Rajathi, S., Charles Vincent, V. et al. Experimental and theoretical investigations of propyl para-hydroxybenzoate crystal for optical applications. J Mater Sci: Mater Electron 32, 25045–25064 (2021). https://doi.org/10.1007/s10854-021-06961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06961-9

Navigation