Skip to main content
Log in

Effect of particle size on spin glass state and Curie temperature in Sm0.5Ca0.5MnO3 with charge ordering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The particle size and magnetic properties of charge-ordered (CO) Sm0.5Ca0.5MnO3 (SCMO) manganites prepared by solid-state reaction with ball milling have been investigated. Studies on surface morphology and particle size show that the particle size of SCMO manganite without ball milling is relative large (about 4 μm). With the ball milling, the particles begin to disperse, the particle size gradually decreases, and it reaches hundreds to tens of nanometers after milling for 12 h to 36 h. At this time, the particles agglomerate. Magnetization versus temperature (M–T) measurements and the inverse susceptibility versus temperature (χ−1–T) measurements show ferromagnetic (FM) transition at Curie temperature (TC) and spin glass (SG) state at freezing temperature (Tf). Moreover, there is a bulging (sunken) peak near 273 K in the M–T (χ−1–T) curves, suggesting that the CO anti-ferromagnetic (AFM) phase appears in the SCMO. The temperature corresponding to this bulging (sunken) peak represents CO temperature (TCO). The results of magnetization versus field (M–H) loops, M–T curves and χ−1–T curves show that the decrease of particle size with ball milling can suppress the formation of CO-AFM phase, decreasing the Tf, TC, TCO and coercive field (HC). Our work shows that it is a way to tune SG state and Curie temperature by controlling the particle size of the manganites with charge ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Science 270, 961 (1995)

    Article  CAS  Google Scholar 

  2. H. Wang, W.S. Tan, AIP Adv. 10, 095113 (2020)

    Article  CAS  Google Scholar 

  3. H.O. Wang, Z. Chu, K.P. Su, W.S. Tan, D.X. Huo, J. Alloys Compd. 689, 69 (2016)

    Article  CAS  Google Scholar 

  4. L.H. Nguyen, L.X. Hung, N.X. Phuc, P.H. Nam, L.T.T. Ngan, N.V. Dang, L.V. Bau, P.H. Linh, P.T. Phong, J. Alloys Compd. 849, 156607 (2020)

    Article  CAS  Google Scholar 

  5. M.H. Ehsani, T. Raoufi, F.S. Razavi, J. Magn. Magn. Mater. 475, 484 (2019)

    Article  CAS  Google Scholar 

  6. M.R. Ahmed, J. Magn. Magn. Mater. 504, 166628 (2020)

    Article  CAS  Google Scholar 

  7. K. Das, R. Rawat, B. Satpati, I. Das, Appl. Phys. Lett. 103, 202406 (2013)

    Article  Google Scholar 

  8. Z.H. Qiu, D.Z. Hou, J. Barker, K. Yamamoto, O. Gomonay, E. Saitoh, Nat. Mater. 17, 577 (2018)

    Article  CAS  Google Scholar 

  9. H. Wang, H. Zhang, Y. Wang, W. Tan, D. Huo, J. Phys. Condens. Matter 33, 285802 (2021)

    Article  CAS  Google Scholar 

  10. S. Giri, S. Yusuf, M. Mukadam, T. Nath, J. Appl. Phys. 115, 093906 (2014)

    Article  Google Scholar 

  11. C.Y. Li, Y.Q. Wang, R.S. Cai, Y.Z. Chen, J.R. Sun, Mater. Lett. 95, 70 (2013)

    Article  CAS  Google Scholar 

  12. S. Banik, K. Das, I. Das, J. Magn. Magn. Mater. 403, 36 (2016)

    Article  CAS  Google Scholar 

  13. K. Das, N. Banu, I. Das, B.N. Dev, Solid State Commun. 274, 36 (2018)

    Article  CAS  Google Scholar 

  14. X.L. Xu, Y. Li, F.F. Hou, Q. Cheng, R.Z. Su, J. Alloys Compd. 628, 89 (2015)

    Article  CAS  Google Scholar 

  15. H.O. Wang, H. Zhang, K.P. Su, S. Huang, W.S. Tan, D.X. Huo, J. Mater. Sci. Mater. Electron. 31, 14421 (2020)

    Article  CAS  Google Scholar 

  16. Z.H. Karahroudi, K. Hedayati, M. Goodarzi, Main Group Met. Chem. 43, 26 (2020)

    Article  CAS  Google Scholar 

  17. L. Abbasi, K. Hedayati, D. Ghanbari, J. Mater. Sci. Mater. Electron 32, 14477 (2021)

    Article  CAS  Google Scholar 

  18. Y. Tomioka, T. Okuda, Y. Okimoto, A. Asamitsu, H. Kuwahara, Y. Tokura, J. Alloys Compd. 326, 27 (2001)

    Article  CAS  Google Scholar 

  19. H.O. Wang, W.F. Yang, K.P. Su, D.X. Huo, W.S. Tan, J. Alloys Compd. 648, 966 (2015)

    Article  CAS  Google Scholar 

  20. H. Wang, J. Zhang, Q.J. Jia, F. Xu, W.S. Tan, D.X. Huo, J. Gao, J. Appl. Phys. 115, 233911 (2014)

    Article  Google Scholar 

  21. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  CAS  Google Scholar 

  22. M. Gruyters, Phys. Rev. Lett. 95, 077204 (2005)

    Article  CAS  Google Scholar 

  23. S.D. Tiwari, K.P. Rajeev, Phys Rev B 72, 104433 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604067, 51601049, 51702289). We would like to thank colleagues from Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF) for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiou Wang or Dexuan Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, Y., Zhang, H. et al. Effect of particle size on spin glass state and Curie temperature in Sm0.5Ca0.5MnO3 with charge ordering. J Mater Sci: Mater Electron 32, 24540–24547 (2021). https://doi.org/10.1007/s10854-021-06931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06931-1

Navigation