Skip to main content
Log in

AZO thin films grown by confocal RF sputtering: role of deposition time on microstructural, optical, luminescence and electronic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, 2% aluminum-doped zinc oxide (AZO) thin films are deposited on quartz substrates by radiofrequency magnetron sputtering in confocal configuration at room temperature (RT). The effects of various deposition times (20, 40 and 90 min) on microstructure, surface morphology, optical, luminescence and electrical properties are investigated using different characterization techniques. X-ray diffraction measurements reveal that all AZO thin films have a wurtzite hexagonal structure with a more intense preferential growth direction (002). Better crystallinity and larger grains are observed by increasing deposition time (thickness). Atomic force microscopy images show that the morphology and surface roughness depend on deposition time. The results from the measurements by UV–Visible spectrophotometry put into evidence that all the films are transparent with an average transmittance reaching 78% after 90 min of deposition. Moreover, the bandgap energy decreases from 3.57 to 3.38 eV whereas the refractive index increases from 2.26 to 2.30 with increasing deposition time from 20 to 90 min. Room temperature photoluminescence spectra show a decrease in the entire emission by increasing deposition time while a violet emission is observed only for the AZO film grown for 90 min. Hall Effect measurements demonstrate that electrical properties of the AZO films are improved with increasing sputtering time. Indeed, with the increase of deposition time, the Hall mobility increased from 0.92 to 3.30 cm2/V s and the resistivity decreased from 2.36 × 10–3 to 1.48 × 10–3 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.M. Momeni, S.M. Mirhoseini, ZnO nanorod films fabricated on zinc foil for photoelectrochemical water splitting. Surf. Eng. 31, 507–512 (2015). https://doi.org/10.1179/1743294414Y.0000000437

    Article  CAS  Google Scholar 

  2. M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting. J. Appl. Electrochem. 45, 557–566 (2015). https://doi.org/10.1007/s10800-015-0836-x

    Article  CAS  Google Scholar 

  3. J. Ghosh, R. Ghosh, P.K. Giri, Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuator B 254, 681–689 (2018). https://doi.org/10.1016/j.snb.2017.07.110

    Article  CAS  Google Scholar 

  4. M. Asemi, M. Ahmadi, M. Ghanaatshoar, Preparation of highly conducting Al-doped ZnO target by vacuum heat treatment for thin film solar cell applications. Ceram. Int. 44, 12862–12868 (2018). https://doi.org/10.1016/j.ceramint.2018.04.096

    Article  CAS  Google Scholar 

  5. H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmorea, D.B. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 377, 798–802 (2000). https://doi.org/10.1016/S0040-6090(00)01290-6

    Article  Google Scholar 

  6. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  CAS  Google Scholar 

  7. R.A. Afre, N. Sharma, M. Sharon, Transparent conducting oxide films for various applications: a review. Rev. Adv. Mater. Sci. 53, 79–89 (2018). https://doi.org/10.1515/rams-2018-0006

    Article  CAS  Google Scholar 

  8. Y. Lu, S. Wang, M. Yang, X. Xu, Q. Li, Comparative study of AZO and ITO thin film sputtered at different temperatures and their application in Cu2ZnSnS4 solar cells. J. Mater. Sci. 29, 17525–17532 (2018). https://doi.org/10.1007/s10854-018-9853-y

    Article  CAS  Google Scholar 

  9. M. Chaves, R. Ramos, E. Martins, E.C. Rangel, N. Cristino da Cruza, S.F. Durrant, J.R.R. Bortoleto, Al-doping and properties of AZO thin films grown at room temperature: sputtering pressure effect. Mater. Res. 22, e20180665 (2019). https://doi.org/10.1590/1980-5373-MR-2018-0665

    Article  CAS  Google Scholar 

  10. K. Necib, T. Touam, A. Chelouche, L. Ouarez, D. Djouadi, B. Boudine, Investigation of the effects of thickness on physical properties of AZO sol-gel films for photonic device applications. J. Alloys Compd. 735, 2236–2246 (2018). https://doi.org/10.1016/j.jallcom.2017.11.361

    Article  CAS  Google Scholar 

  11. M. Humayan Kabir, M. Mintu Ali, M. Abdul Kaiyum, M.S. Rahman, Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J. Phys. Commun. 3, 105007 (2019)

    Article  Google Scholar 

  12. S. Saini, P. Mele, T. Oyake, J. Shiomi, J.-P. Niemelä, M. Karppinen, K. Miyazaki, C. Li, T. Kawaharamura, A. Ichinose, Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films 685, 180–185 (2019). https://doi.org/10.1016/j.tsf.2019.06.010

    Article  CAS  Google Scholar 

  13. L. Ma, X. Ai, H. Quan, W. Yang, X. Du, Resistivity depends on preferred orientation for transparent conductive thin films. J. Korean Phys. Soc. 74, 806–811 (2019). https://doi.org/10.3938/jkps.74.806

    Article  CAS  Google Scholar 

  14. E. Güneri, B. Stadler, Effect of growth temperature on the key properties of aluminum-doped zinc oxide thin films prepared by atomic layer deposition. MRS Commun. 9, 1105–1110 (2019). https://doi.org/10.1557/mrc.2019.82

    Article  CAS  Google Scholar 

  15. Y. Xia, P. Wang, S. Shi, M. Zhang, G. He, J. Lv, Z. Sun, Deposition and characterization of AZO thin films on flexible glass substrates using DC magnetron sputtering technique. Ceram. Int. 43, 4536–4544 (2017). https://doi.org/10.1016/j.ceramint.2016.12.106

    Article  CAS  Google Scholar 

  16. F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelée, A.G. Sanchez, A. Chelouche, M.-P. Besland, Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration. Mater. Sci. Semicond. Proc. 118, 105217 (2020). https://doi.org/10.1016/j.mssp.2020.105217

    Article  CAS  Google Scholar 

  17. D. Mendil, F. Challali, T. Touam, V. Bockelée, S. Ouhenia, A. Souici, D. Djouadi, A. Chelouche, Preparation of RF sputtered AZO/Cu/AZO multilayer films and the investigation of Cu thickness and substrate effects on their microstructural and optoelectronic properties. J. Alloys Compd. 860, 158470 (2020). https://doi.org/10.1016/j.jallcom.2020.158470

    Article  CAS  Google Scholar 

  18. M.M. Momeni, Z. Tahmasebi, Effect of electrodeposition time on morphology and photoelecrochemical performance of bismuth vanadate films. Inorg. Chem. Commun. 125, 108445 (2021). https://doi.org/10.1016/j.inoche.2021.108445

    Article  CAS  Google Scholar 

  19. M.M. Momeni, Y. Ghayeb, A. Hallaj, R. Bagheri, Z. Songd, H. Farrokhpour, Effects of platinum photodeposition time on the photoelectrochemical properties of Fe2O3 nanotube electrodes. Mater. Lett. 237, 188–192 (2019). https://doi.org/10.1016/j.matlet.2018.11.089

    Article  CAS  Google Scholar 

  20. D. Nečas, P. Klapetek, Gwyddion: open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012). https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  21. K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, The structural properties of Al doped ZnO films depending on the thickness and their effect on the electrical properties. Appl. Surf. Sci. 258, 1283–1289 (2011). https://doi.org/10.1016/j.apsusc.2011.07.022

    Article  CAS  Google Scholar 

  22. M.K. Puchert, P.Y. Timbrell, R.N. Lamb, Post-deposition annealing of radio frequency magnetron sputtered ZnO films. J. Vac. Sci. Technol. 14, 2220–2230 (1996). https://doi.org/10.1116/1.580050

    Article  CAS  Google Scholar 

  23. B.D. Cullity, Elements of X-Ray Diffractions (Addison-Wesley, Reading, 1978)

    Google Scholar 

  24. J.H. Jou, M.Y. Han, D.J. Cheng, Substrate dependent internal stress in sputtered zinc oxide thin films. J. Appl. Phys. 71, 4333–4336 (1992). https://doi.org/10.1063/1.350815

    Article  CAS  Google Scholar 

  25. J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989). https://doi.org/10.1016/0040-6090(89)90030-8

    Article  Google Scholar 

  26. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  27. A. Chelouche, T. Touam, M. Tazerout, F. Boudjouan, D. Djouadi, A. Doghmane, Effect of Li codoping on highly oriented sol-gel Ce-doped ZnO thin films properties. J. Lumin. 181, 331–336 (2017). https://doi.org/10.1016/j.jlumin.2017.04.047

    Article  CAS  Google Scholar 

  28. F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, X.M. Wu, L.J. Zhuge, Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films. Vacuum 89, 127–131 (2013). https://doi.org/10.1016/j.vacuum.2012.02.040

    Article  CAS  Google Scholar 

  29. S.U. Lee, B. Hong, J.-H. Boo, Structural, electrical, and optical properties of SnO2: Sb films prepared on flexible substrate at room temperature. Jpn. J. Appl. Phys. 50, 01AB10 (2011). https://doi.org/10.1143/JJAP.50.01AB10

    Article  CAS  Google Scholar 

  30. G.A. Kumar, M.V.R. Reddy, K.N. Reddy, Structural, optical and electrical characteristics of nanostructured ZnO thin films with various thicknesses deposited by RF magnetron sputtering. Res. J. Phys. Sci. 1, 17–23 (2013)

    CAS  Google Scholar 

  31. Q. You, H. Cai, Z. Hu, P. Liang, S. Prucnal, S. Zhou, J. Sun, N. Xu, J. Wu, Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al–N co-doping. J. Alloys Compd. 644, 528–533 (2015). https://doi.org/10.1016/j.jallcom.2015.05.060

    Article  CAS  Google Scholar 

  32. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloys. Compd. 623, 367–373 (2015). https://doi.org/10.1016/j.jallcom.2014.11.055

    Article  CAS  Google Scholar 

  33. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  34. T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured TiO2 thin films. Eur. Phys. J. Appl. Phys. 67, 30302 (2014). https://doi.org/10.1051/epjap/2014140228

    Article  CAS  Google Scholar 

  35. C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu, N.A. El-Masry, L.H. Robins, Optical band gap dependence on composition and thickness of InxGa1-xN (0≪ x ≪ 0.25) grown on GaN. Appl. Phys. Lett. 75, 2566–2568 (1999). https://doi.org/10.1063/1.125079

    Article  CAS  Google Scholar 

  36. Y.-H. Sun, H.-L. Wang, J. Chen, L. Fang, L. Wang, tructural and optoelectronic properties of AZO thin films prepared by RF magnetron sputtering at room temperature. Trans. Nonferr. Met. Soc. China 26, 1655–1662 (2016). https://doi.org/10.1016/S1003-6326(16)64275-9

    Article  CAS  Google Scholar 

  37. M.A. Mahadik, Y.M. Hunge, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. J. Semicond. 36, 033002 (2015). https://doi.org/10.1088/1674-4926/36/3/033002

    Article  CAS  Google Scholar 

  38. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-K. Xue, X. Du, Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys. Rev. B 93, 235305 (2016). https://doi.org/10.1103/PhysRevB.93.235305

    Article  CAS  Google Scholar 

  39. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  40. T. Ganesh, K. Perumal, R. Kumar, N. Bhaskar, Effect of thickness on micro-structural and optical properties of Al-doped ZnO films prepared by sol-gel spin coating. NHC 17, 171–178 (2017)

    Article  Google Scholar 

  41. A. Samavati, H. Nur, A.F. Ismail, Z. Othaman, Radio frequency magnetron sputtered ZnO/SiO2/glass thin film: role of ZnO thickness on structural and optical properties. J. Alloy Compd. 671, 170–176 (2016). https://doi.org/10.1016/j.jallcom.2016.02.099

    Article  CAS  Google Scholar 

  42. A. Duffy, Chemical bonding in the oxides of the elements: a new appraisal. Solid State Chem. 62, 145–157 (1986). https://doi.org/10.1016/0022-4596(86)90225-2

    Article  CAS  Google Scholar 

  43. J.A. Duffy, Optical basicity of titanium (IV) oxide and zirconium (IV) oxide. J. Am. Ceram. Soc. 72, 2012–2013 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06022.x

    Article  CAS  Google Scholar 

  44. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides I. J. Appl. Phys. 79, 1736–1740 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  45. A. Chelouche, T. Touam, K. Necib, L. Ouarez, F. Challali, D. Djouadi, Investigation of the effects of drying process on microstructural and luminescence properties of Al-doped ZnO thin films. J. Lumin. 219, 11689 (2020). https://doi.org/10.1016/j.jlumin.2019.116891

    Article  CAS  Google Scholar 

  46. R. Haarindraprasad, U. Hashim, S.C. Gopinath, M. Kashif, P. Veeradasan, S. Balakrishnan, K. Foo, P. Poopalan, Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications. PLoS ONE 10, e0132755 (2015). https://doi.org/10.1371/journal.pone.0132755

    Article  CAS  Google Scholar 

  47. A. Mohanta, J.G. Simmons Jr., G. Shen, S.M. Kim, P. Kung, H.O. Everitt, Al doping in ZnO nanowires enhances ultraviolet emission and suppresses broad defect emission. J. Lumin. 211, 264–270 (2019). https://doi.org/10.1016/j.jlumin.2019.03.049

    Article  CAS  Google Scholar 

  48. H.W. Kim, M.A. Kebede, H.S. Kim, Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers. Curr. Appl. Phys. 10, 60–63 (2010). https://doi.org/10.1016/j.cap.2009.04.012

    Article  CAS  Google Scholar 

  49. D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering. J. Lumin. 215, 116631 (2019). https://doi.org/10.1016/j.jlumin.2019.116631

    Article  CAS  Google Scholar 

  50. S.K. Mishra, S. Bayan, P. Chakraborty, R.K. Srivastava, Defect-dominated optical emission and enhanced ultraviolet photoconductivity properties of ZnO nanorods synthesized by simple and catalyst-free approach. Appl. Phys. A 115, 1193–1203 (2014). https://doi.org/10.1007/s00339-013-7959-x

    Article  CAS  Google Scholar 

  51. H. Rotella, Y. Mazel, S. Brochen, A. Valla, A. Pautrat, C. Licitra, N. Rochat, C. Sabbione, G. Rodriguez, E. Nolot, Role of vacancy defects in Al doped ZnO thin films for optoelectronic devices. J. Phys. D 50, 485106 (2017)

    Article  Google Scholar 

  52. A. Djurišić, Y. Leung, K. Tam, Y. Hsu, L. Ding, W. Ge, Y. Zhong, K. Wong, W. Chan, H. Tam, Defect emissions in ZnO nanostructures. Nanotechnology 18, 09570 (2007). https://doi.org/10.1088/0957-4484/18/9/095702

    Article  CAS  Google Scholar 

  53. N. Akin, S.S. Cetin, M. Cakmak, T. Memmedli, S. Ozcelik, Effect of film thickness on properties of aluminum doped zinc oxide thin films deposition on polymer substrate. J. Mater. Sci. 24, 5091–5096 (2013). https://doi.org/10.1007/s10854-013-1528-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Prof. A. Doghmane for his careful reading of the manuscript and his corrections of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Touam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamedi, M., Challali, F., Touam, T. et al. AZO thin films grown by confocal RF sputtering: role of deposition time on microstructural, optical, luminescence and electronic properties. J Mater Sci: Mater Electron 32, 25288–25299 (2021). https://doi.org/10.1007/s10854-021-06988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06988-y

Navigation