Skip to main content
Log in

Reduction-controlled electrical conductivity of large area graphene oxide channel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduction of graphene oxide (GO) can be used to improve the physical and electronic characteristics of rGO through de-oxygenation and restoration of π-conjugation. Here, the gradual and controllable thermal reduction of GO film formed by drop-casting method was carried out at low temperatures (100 − 350 °C) in ambient conditions with simultaneous electrical measurements. The conductivity of GO film depended on the level of reduction. Electrical measurements show a decrease and then an increase in electrical current after > 150 °C with a maximum change of five orders in current at 300 °C in comparison to GO. The role of functional groups on the evolution of electrical conductance during reduction has been investigated by correlating the FTIR spectroscopy and electrical conductivity. It is shown that the changes in conductivity is governed by two processes, first process is mainly associated with water and OH groups desorption and second process is mainly associated with restored graphene sp2 network. The process, therefore, lends itself to the production of conductive reduced GO suitable for many applications including flexible electronics, TCO layer in solar cells, gas and temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Johari, V.B. Shenoy, ACS Nano 5, 7640 (2011)

    CAS  Google Scholar 

  2. S. Chen, N. Ullah, T. Wang, R. Zhang, J. Mater. Chem. C 6, 6875 (2018)

    CAS  Google Scholar 

  3. M.D. Purkayastha, S. Sil, N. Singh, P.P. Ray, G.K. Darbha, S. Bhattacharyya, A.I. Mallick, T.P. Majumder, FlatChem 22, 100180 (2020)

    CAS  Google Scholar 

  4. M. Soni, P. Kumar, J. Pandey, S.K. Sharma, A. Soni, Carbon 128, 172 (2018)

    CAS  Google Scholar 

  5. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008)

    CAS  Google Scholar 

  6. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, E. Riedo, Science 328, 1373 (2010)

    CAS  Google Scholar 

  7. C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 9, 2206 (2009)

    Google Scholar 

  8. S.E. Yalcin, C. Galande, R. Kappera, H. Yamaguchi, U. Martinez, K.A. Velizhanin, S.K. Doorn, A.M. Dattelbaum, M. Chhowalla, P.M. Ajayan, G. Gupta, A.D. Mohite, ACS Nano 9, 2981 (2015)

    CAS  Google Scholar 

  9. Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang, L. Wan, J. Li, L. Chen, X. Wang, S. Ding, D.W. Zhang, Carbon 62, 157 (2013)

    CAS  Google Scholar 

  10. V. Lee, L. Whittaker, C. Jaye, K.M. Baroudi, D.A. Fischer, S. Banerjee, Chem. Mater. 21, 3905 (2009)

    CAS  Google Scholar 

  11. N. Yadav, B. Lochab, FlatChem 13, 40 (2019)

    CAS  Google Scholar 

  12. Y. Jin, Y. Zheng, S.G. Podkolzin, W. Lee, J. Mater. Chem. C 8, 4885 (2020)

    CAS  Google Scholar 

  13. V.B. Mohan, K. Jayaraman, M. Stamm, D. Bhattacharyya, Thin Solid Films 616, 172 (2016)

    CAS  Google Scholar 

  14. E. Tegou, G. Pseiropoulos, M.K. Filippidou, S. Chatzandroulis, Microelectron. Eng. 159, 146 (2016)

    CAS  Google Scholar 

  15. M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, W.N.W. Salleh, F. Aziz, Materialia 6, 100344 (2019)

    CAS  Google Scholar 

  16. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B 193, 49 (2015)

    CAS  Google Scholar 

  17. H.H. Shi, S. Jang, H.E. Naguib, ACS Appl. Mater. Interfaces 11, 27183 (2019)

    CAS  Google Scholar 

  18. V. Kumar, V. Kumar, G.B. Reddy, R. Pasricha, RSC Adv. 5, 74342 (2015)

    CAS  Google Scholar 

  19. Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu, A. Marconnet, Adv. Func. Mater. 29, 1901388 (2019)

    Google Scholar 

  20. A.C. Faucett, J.N. Flournoy, J.S. Mehta, J.M. Mativetsky, FlatChem 1, 42 (2017)

    CAS  Google Scholar 

  21. J. Liu, M. Notarianni, G. Will, V.T. Tiong, H. Wang, N. Motta, Langmuir 29, 13307 (2013)

    CAS  Google Scholar 

  22. N.H. Aminuddin Rosli, K.S. Lau, T. Winie, S.X. Chin, C.H. Chia, Mater. Chem. Phys. 262, 124274 (2021)

    CAS  Google Scholar 

  23. M. Savchak, N. Borodinov, R. Burtovyy, M. Anayee, K. Hu, R. Ma, A. Grant, H. Li, D.B. Cutshall, Y. Wen, G. Koley, W.R. Harrell, G. Chumanov, V. Tsukruk, I. Luzinov, ACS Appl. Mater. Interfaces 10, 3975 (2018)

    CAS  Google Scholar 

  24. M.M. Bernal, M. Tortello, S. Colonna, G. Saracco, A. Fina, Nanomaterials. 7, 428 (2017)

    Google Scholar 

  25. I. Sengupta, S. Chakraborty, M. Talukdar, S.K. Pal, S. Chakraborty, J. Mater. Res. 33, 4113 (2018)

    CAS  Google Scholar 

  26. Y. Wang, Y. Chen, S.D. Lacey, L. Xu, H. Xie, T. Li, V.A. Danner, L. Hu, Mater. Today 21, 186 (2018)

    CAS  Google Scholar 

  27. C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144 (2010)

    Google Scholar 

  28. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, ACS Nano 3, 2547 (2009)

    CAS  Google Scholar 

  29. S. Mao, H. Pu, J. Chen, RSC Adv. 2, 2643 (2012)

    CAS  Google Scholar 

  30. R.L.D. Whitby, ACS Nano 8, 9733 (2014)

    CAS  Google Scholar 

  31. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1, 31 (2019)

    Google Scholar 

  32. Y. Tian, Z. Yu, L. Cao, X.L. Zhang, C. Sun, D.-W. Wang, J. Energy Chem. 55, 323 (2021)

    Google Scholar 

  33. H. Sachdeva, Green Process. Synth. 9, 515 (2020)

    Google Scholar 

  34. N.D.K. Tu, J. Choi, C.R. Park, H. Kim, Chem. Mater. 27, 7362 (2015)

    Google Scholar 

  35. O.M. Slobodian, P.M. Lytvyn, A.S. Nikolenko, V.M. Naseka, O.Yu. Khyzhun, A.V. Vasin, S.V. Sevostianov, A.N. Nazarov, Nanoscale Res. Lett. 13, 139 (2018)

    Google Scholar 

  36. C.K. Chua, M. Pumera, J. Mater. Chem. 22, 23227 (2012)

    CAS  Google Scholar 

  37. A.V. Dolbin, M.V. Khlistuck, V.B. Esel’son, V.G. Gavrilko, N.A. Vinnikov, R.M. Basnukaeva, A.I. Prokhvatilov, I.V. Legchenkova, V.V. Meleshko, W.K. Maser, A.M. Benito, Low Temp. Phys. 43, 383 (2017)

    CAS  Google Scholar 

  38. P. Zhang, Z. Li, S. Zhang, G. Shao, Energy Environ. Mater. 1, 5 (2018)

    CAS  Google Scholar 

  39. B. Muchharla, T.N. Narayanan, K. Balakrishnan, P.M. Ajayan, S. Talapatra, 2D Mater. 1, 011008 (2014)

    CAS  Google Scholar 

  40. D.S. Bhaskaram, G. Govindaraj, J. Phys. Chem. C 122, 10303 (2018)

    CAS  Google Scholar 

  41. J. Ma, X. Hou, M. Yu, J. Hua, X. Ren, H. Qiu, R. Wang, J. Phys. D: Appl. Phys. 50, 435101 (2017)

    Google Scholar 

  42. T. Anusuya, J. Prakash, D.K. Pathak, K. Saxena, R. Kumar, V. Kumar, Mater. Today Commun. 26, 101930 (2021)

    Google Scholar 

  43. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1918, 98 (1918)

    Google Scholar 

  44. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  45. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    CAS  Google Scholar 

  46. I. Sengupta, S.S.S.S. Kumar, S.K. Pal, S. Chakraborty, J. Mater. Res. 35, 1197 (2020)

    CAS  Google Scholar 

  47. Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V.A. Danner, T. Li, L. Hu, Nano Lett. 16, 3616 (2016)

    CAS  Google Scholar 

  48. S. Bai, X. Shen, G. Zhu, A. Yuan, J. Zhang, Z. Ji, D. Qiu, Carbon 60, 157 (2013)

    CAS  Google Scholar 

  49. Y. Qiu, F. Collin, R.H. Hurt, I. Külaots, Carbon 96, 20 (2016)

    CAS  Google Scholar 

  50. A.C. Ferrari, J. Robertson, Phys. Rev. B 64, 075414 (2001)

    Google Scholar 

  51. J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, P.-H. Tan, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  52. F. Herziger, P. May, J. Maultzsch, Phys. Rev. B 85, 235447 (2012)

    Google Scholar 

  53. A. Merlen, J.G. Buijnsters, C. Pardanaud, Coatings 7, 153 (2017)

    Google Scholar 

  54. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Google Scholar 

  55. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)

    CAS  Google Scholar 

  56. R.N. Gontijo, G.C. Resende, C. Fantini, B.R. Carvalho, J. Mater. Res. 34, 1976 (2019)

    CAS  Google Scholar 

  57. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Materials 11, 1050 (2018)

    Google Scholar 

  58. H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, J. Raman Spectrosc. 44, 1018 (2013)

    CAS  Google Scholar 

  59. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 4, 1539 (2013)

    Google Scholar 

  60. J.T. Paci, T. Belytschko, G.C. Schatz, J. Phys. Chem. C 111, 18099 (2007)

    CAS  Google Scholar 

  61. R.C. Sinclair, P.V. Coveney, J. Chem. Inf. Model. 59, 2741 (2019)

    CAS  Google Scholar 

  62. X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 114, 832 (2010)

    CAS  Google Scholar 

  63. R. David, A. Tuladhar, L. Zhang, C. Arges, R. Kumar, J. Phys. Chem. B 124, 8167 (2020)

    CAS  Google Scholar 

  64. R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, J. Am. Chem. Soc. 133, 17315 (2011)

    CAS  Google Scholar 

  65. O. Okhay, G. Gonçalves, A. Tkach, C. Dias, J. Ventura, M.F. da Ribeiro Silva, L.M. Valente Gonçalves, E. Titus, J. Appl. Phys. 120, 051706 (2016)

    Google Scholar 

  66. W. Zeng, X.-M. Tao, S. Lin, C. Lee, D. Shi, K. Lam, B. Huang, Q. Wang, Y. Zhao, Nano Energy 54, 163 (2018)

    CAS  Google Scholar 

  67. T. Anusuya, V. Kumar, V. Kumar, Chemosphere 282, 131019 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors (AT & VK) are thankful to IIITDM Kancheepuram for providing financial support and facilities. Author (VK) acknowledges financial support from Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Govt. of India (Grant No. ECR/2016/001715).

Funding

Author (VK) acknowledges financial support from Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Govt. of India (Grant No. ECR/2016/001715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusuya, T., Prema, D. & Kumar, V. Reduction-controlled electrical conductivity of large area graphene oxide channel. J Mater Sci: Mater Electron 33, 8935–8945 (2022). https://doi.org/10.1007/s10854-021-06979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06979-z

Navigation