Skip to main content
Log in

Sintering Behavior of WC-Co with Additives of TiC, VC, and (Ta, Nb)C: Microstructural and Mechanical Features

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, WC-10Co with TiC, VC and (Ta, Nb)C as the inhibitors to the grain growth was prepared using high energy ball milling and the subsequent HIP process at various temperatures. Phase evolution and microstructural studies were performed for the milled and sintered samples by x-ray diffraction, vibrating sample magnetometry, field emission scanning electron microscopy and transmission electron microscopy. Also, the density and microhardness of the sintered samples were measured. It was found that densification and grain-growth rate were sensitive to the sintering temperature, type and overall content of the additives. The samples sintered at the higher temperature showed better densification and hardness, with lower porosities. The additives were found to have significant influence on the microstructure and properties of the sintered products. Sintered samples containing additives had considerably improved microhardness, but densification was lowered up to 4.8%. However, the highest microhardness was 1920 HV for the sample with the three types of additives sintered at 1480 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Marshall and A. Kusoffsky, Binder Phase Structure in Fine and Coarse WC-Co Hard Metals with Cr and v Carbide Additions, Int. J. Refract. Met. Hard Mater., 2013, 40, p 27–35. https://doi.org/10.1016/j.ijrmhm.2013.04.001

    Article  CAS  Google Scholar 

  2. B. Yu, Y. Li, Q. Lei and Y. Nie, Microstructures and Mechanical Properties of WC-Co-XCr-Mo Cement Carbides, J. Alloys Compd., 2019, 771, p 636–642. https://doi.org/10.1016/j.jallcom.2018.08.255

    Article  CAS  Google Scholar 

  3. J. García, V. Collado Ciprés, A. Blomqvist and B. Kaplan, Cemented Carbide Microstructures: A Review, Int. J. Refract. Met. Hard Mater., 2019, 80, p 40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  CAS  Google Scholar 

  4. M. Bacia, E. Pauty, S. Lay, C.H. Allibert and A. Delano, Cr-Rich Layer at the WC/Co Interface in Cr-Doped WC-Co Cermets: Segregation or Metastable Carbide?, J. Crystal Growth, 2004, 270, p 219–227.

    Article  Google Scholar 

  5. E. Ghasali, T. Ebadzadeh, M. Alizadeh and M. Razavi, Mechanical and Microstructural Properties of WC-Based Cermets: A Comparative Study on the Effect of Ni and Mo Binder Phases, Ceram. Int., 2018, 44(2), p 2283–2291.

    Article  CAS  Google Scholar 

  6. Z. Lin, J. Xiong, Z. Guo, W. Zhou, W. Wan and L. Yang, Effect of Mo2C Addition on the Microstructure and Fracture Behavior of (W, Ti)C-Based Cemented Carbides, Ceram. Int., 2014, 40(PB), p 16421–16428. https://doi.org/10.1016/j.ceramint.2014.07.150

    Article  CAS  Google Scholar 

  7. M. Mohammadpour, P. Abachi, N. Parvin and K. Pourazrang, Study of Cemented Carbonitrides with Nickel as Binder: Experimental Investigations and Computer Calculations, Int. J. Refract. Met. Hard Mater., 2012, 31, p 164–170. https://doi.org/10.1016/j.ijrmhm.2011.10.011

    Article  CAS  Google Scholar 

  8. W. Liu, X. Song, J. Zhang, F. Yin and G. Zhang, A Novel Route to Prepare Ultrafine-Grained WC-Co Cemented Carbides, J. Alloys Compd., 2008, 458(1–2), p 366–371.

    Article  CAS  Google Scholar 

  9. X. Li, Y. Liu, W. Wei, M. Du, K. Li, J. Zhou and K. Fu, Influence of NbC and VC on Microstructures and Mechanical Properties of WC-Co Functionally Graded Cemented Carbides, Mater. Des., 2016, 90, p 562–567. https://doi.org/10.1016/j.matdes.2015.10.156

    Article  CAS  Google Scholar 

  10. P.K. Katiyar and N.S. Randhawa, Corrosion Behavior of WC-Co Tool Bits in Simulated (Concrete, Soil, and Mine) Solutions with and without Chloride Additions, Int. J. Refract. Met. Hard Mater., 2019, 85(July), p 105062. https://doi.org/10.1016/j.ijrmhm.2019.105062

    Article  CAS  Google Scholar 

  11. Z.S. Park, S.J. Lee, T. Lee, J.H. Kim and Y.H. Moon, Fabrication of Long Tubular Parts Made of Tungsten-Heavy Alloys by Inductive Bonding of Multiple Tubes, Int. J. Refract. Met. Hard Mater., 2019, 85(August), p 105058. https://doi.org/10.1016/j.ijrmhm.2019.105058

    Article  CAS  Google Scholar 

  12. T.A. Fabijanić, Ž Alar and D. Ćorić, Influence of Consolidation Process and Sintering Temperature on Microstructure and Mechanical Properties of near Nano- and Nano-Structured WC-Co Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2016, 54, p 82–89.

    Article  Google Scholar 

  13. K. Liu, Z. Wang, Z. Yin, L. Cao and J. Yuan, Effect of Co Content on Microstructure and Mechanical Properties of Ultrafine Grained WC-Co Cemented Carbide Sintered by Spark Plasma Sintering, Ceram. Int., 2018, 44(15), p 18711–18718. https://doi.org/10.1016/j.ceramint.2018.07.100

    Article  CAS  Google Scholar 

  14. D.D. Phuong, P. Van Trinh, L. Van Duong and L.D. Chung, Influence of Sintering Temperature on Microstructure and Mechanical Properties of WC-8Ni Cemented Carbide Produced by Vacuum Sintering, Ceram. Int., 2016, 42(13), p 14937–14943. https://doi.org/10.1016/j.ceramint.2016.06.134

    Article  CAS  Google Scholar 

  15. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis and P. Fino, An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26(3), p 993–999.

    Article  CAS  Google Scholar 

  16. W. Wang, H. Zhou, Q. Wang, Y. Gao and K. Wang, Influence of Mechanical Alloying and Sintering Temperature on the Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy, J. Mater. Eng. Perform., 2020, 29(3), p 1686–1695. https://doi.org/10.1007/s11665-020-04610-6

    Article  CAS  Google Scholar 

  17. D.H. Xiao, Y.H. He, W.H. Luo and M. Song, Effect of VC and NbC Additions on Microstructure and Properties of Ultrafine WC-10Co Cemented Carbides, Trans. Nonferrous Met. Soc. China (English Ed. The Nonferrous Metals Society of China, 2009, 19(6), p 1520–1525. https://doi.org/10.1016/S1003-6326(09)60063-7

    Article  CAS  Google Scholar 

  18. W. Su, Y. Wen and Q. Zhang, Effects of Ni and Cu Additions on Microstructures, Mechanical Properties and Wear Resistances of Ultra-Coarse Grained WC–6Co Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2018, 70(September2017), p 176–183. https://doi.org/10.1016/j.ijrmhm.2017.10.009

    Article  CAS  Google Scholar 

  19. J. Jia, H. Liu, Z. Yang, W. Peng, Y. Xu, Y. Yang and J. Luo, Microstructure, Densification and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Spark Plasma Sintering, J. Mater. Eng. Perform., 2020, 29(2), p 1101–1112. https://doi.org/10.1007/s11665-020-04622-2

    Article  CAS  Google Scholar 

  20. A.M. Soleimanpour, P. Abachi and A. Simchi, Microstructure and Mechanical Properties of WC-10Co Cemented Carbide Containing VC or (Ta, Nb)C and Fracture Toughness Evaluation Using Different Models, Int. J. Refract. Met. Hard Mater., 2012, 31, p 141–146. https://doi.org/10.1016/j.ijrmhm.2011.10.004

    Article  CAS  Google Scholar 

  21. M. Mahmoodan, H. Aliakbarzadeh and R. Gholamipour, Microstructural and Mechanical Characterization of High Energy Ball Milled and Sintered WC-10 Wt%Co-XTaC Nano Powders, Int. J. Refract. Met. Hard Mater., 2009, 27(4), p 801–805. https://doi.org/10.1016/j.ijrmhm.2009.02.001

    Article  CAS  Google Scholar 

  22. D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, and Z. Shen, Dense Pure Tungsten Fabricated by Selective Laser Melting. Appl. Sci., 2017, 7(4), 1–13. https://doi.org/10.3390/app7040430

    Article  CAS  Google Scholar 

  23. B. AlMangour, D. Grzesiak and J.M. Yang, Nanocrystalline TiC-Reinforced H13 Steel Matrix Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2016, 96, p 150–161.

    Article  CAS  Google Scholar 

  24. W. Zhou, J. Xiong, W. Wan, Z. Guo, Z. Lin, S. Huang, L. Tang and H. Zhong, The Effect of NbC on Mechanical Properties and Fracture Behavior of WC-10Co Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2015, 50, p 72–78. https://doi.org/10.1016/j.ijrmhm.2014.11.006

    Article  CAS  Google Scholar 

  25. N.A.N. Balbino, E.O. Correa, L. de Carvalho Valeriano and D.A. Amâncio, Microstructure and Mechanical Properties of 90WC-8Ni-2Mo2C Cemented Carbide Developed by Conventional Powder Metallurgy, Int. J. Refract. Met. Hard Mater., 2017, 68(June), p 49–53. https://doi.org/10.1016/j.ijrmhm.2017.06.009

    Article  CAS  Google Scholar 

  26. W. Zeng, X. Gan, Z. Li and K. Zhou, Effect of TiC Addition on the Microstructure and Mechanical Properties of TiN-Based Cermets, Ceram. Int., 2017, 43(1), p 1092–1097. https://doi.org/10.1016/j.ceramint.2016.10.046

    Article  CAS  Google Scholar 

  27. K. Choi, N.M. Hwang and D.Y. Kim, Effect of VC Addition on Microstructural Evolution of WC-Co Alloy: Mechanism of Grain Growth Inhibition, Powder Metall., 2000, 43(2), p 168–172.

    Article  CAS  Google Scholar 

  28. S. Dehlouz, A. Alhussein, F. Lacroix, C. Fradet, S. Seghar and S. Azem, Self-Combustion of Ti-C and Ti-Al Powder Mixture in a Nitrogen Atmosphere: Product Application as Reinforcement in Metal Matrix Composites, J. Mater. Eng. Perform., 2020, 29(3), p 1984–1994.

    Article  CAS  Google Scholar 

  29. A.S. Kurlov and A.A. Rempel, Effect of Sintering Temperature on the Phase Composition and Microhardness of WC-8 Wt% Co Cemented Carbide, Inorg. Mater., 2007, 43(6), p 602–607.

    Article  CAS  Google Scholar 

  30. Z. Huang, X. Ren, M. Liu, C. Xu, X. Zhang, S. Guo and H. Chen, Effect of Cu on the Microstructures and Properties of WC-6Co Cemented Carbides Fabricated by SPS, Int. J. Refract. Met. Hard Mater., 2017, 62, p 155–160. https://doi.org/10.1016/j.ijrmhm.2016.06.007

    Article  CAS  Google Scholar 

  31. G.H. Ha and B.K. Kim, Synthesis of Ultrafine WC/Co Powder by Mechanochemical Process, Powder Metall., 2002, 45(1), p 29–32.

    Article  CAS  Google Scholar 

  32. V. Bonache, M.D. Salvador, D. Busquets and E.F. Segovia, Fabrication of Ultrafine and Nanocrystalline WC-Co Mixtures by Planetary Milling and Subsequent Consolidations, Powder Metall., 2011, 54(3), p 214–221.

    Article  CAS  Google Scholar 

  33. G.H. Lee and S. Kang, Sintering of Nano-Sized WC-Co Powders Produced by a Gas Reduction-Carburization Process, J. Alloys Compd., 2006, 419(1–2), p 281–289.

    Article  CAS  Google Scholar 

  34. J.R. Groza, Chapter 13 Powder Consolidation, Pergamon Mater. Ser., 1999, 2(C), p 347–372.

    Article  CAS  Google Scholar 

  35. Z. Xiao, S. Yu, Y. Li, S. Ruan, L.B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang and D. Tang, Materials Development and Potential Applications of Transparent Ceramics: A Review, Mater. Sci. Eng. R Rep., 2020, 139(May), p 100518. https://doi.org/10.1016/j.mser.2019.100518

    Article  Google Scholar 

  36. D.A. Sandoval, J.J. Roa, O. Ther, E. Tarrés and L. Llanes, Micromechanical Properties of WC-(W, Ti, Ta, Nb)C-Co Composites, J. Alloys Compd., 2019, 777, p 593–601.

    Article  CAS  Google Scholar 

  37. A. Kulmburg and F. Zeman, Influence of Carbon Content on Wc–Tic–(Tanb)c Cemented Carbides, Powder Metall., 1981, 24(4), p 181–184.

    Article  CAS  Google Scholar 

  38. M.N. Rahaman, Kinetics and Mechanisms of Densification. Sinter. Adv. Mater., 2010, p 33–64. https://doi.org/10.1533/9781845699949.1.33

  39. O. Seo, S. Kang and E.J. Lavernia, Growth Inhibition of Nano WC Particles in WC-Co Alloys during Liquid-Phase Sintering, Mater. Trans., 2003, 44(11), p 2339–2345.

    Article  CAS  Google Scholar 

  40. J. Kim and Y.J. Suh, Temperature Dependent Elastic and Thermal Expansion Properties of W3Co3C, W6Co6C and W4Co2C Ternary Carbides, J. Alloys Compd., 2016, 666, p 262–269. https://doi.org/10.1016/j.jallcom.2016.01.061

    Article  CAS  Google Scholar 

  41. M.R. Mahundla, W.R. Matizamhuka, and M.B. Shongwe, The Effect of Densification on Hardness of Ti, Ti-6Al-4V, Ti-34Nb-25Zr Alloy Produced by Spark Plasma Sintering. Mater. Today Proc., Elsevier Ltd, 2020, (xxxx), p 4–7, doi:https://doi.org/10.1016/j.matpr.2020.03.468.

  42. A.O. Adegbenjo, B.A. Obadele and P.A. Olubambi, Densification, Hardness and Tribological Characteristics of MWCNTs Reinforced Ti6Al4V Compacts Consolidated by Spark Plasma Sintering, J. Alloys Compd., 2018, 749, p 818–833. https://doi.org/10.1016/j.jallcom.2018.03.373

    Article  CAS  Google Scholar 

  43. A. Babapoor, M.S. Asl, Z. Ahmadi and A.S. Namini, Effects of Spark Plasma Sintering Temperature on Densification, Hardness and Thermal Conductivity of Titanium Carbide, Ceram. Int., 2018, 44(12), p 14541–14546. https://doi.org/10.1016/j.ceramint.2018.05.071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hurieh Mohammadzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroghli, M., Alimirzaloo, V., Mohammadzadeh, H. et al. Sintering Behavior of WC-Co with Additives of TiC, VC, and (Ta, Nb)C: Microstructural and Mechanical Features. J. of Materi Eng and Perform 31, 814–824 (2022). https://doi.org/10.1007/s11665-021-06209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06209-x

Keywords

Navigation