Skip to main content

Advertisement

Log in

Boosting the Supercapacitive Performance of ZnO by 3-Dimensional Conductive Wrapping with Graphene Sheet

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

ZnO is considered a promising pseudocapacitive material for supercapacitor devices because of its high specific energy density, low cost, non-toxicity, eco-friendliness, and widespread availability. However, its poor electronic and ionic conductivity limits its power density and cycling stability as a supercapacitor device, restricting its use in energy storage systems. Herein we report a novel hybrid nanocomposite electrode material developed by three-dimensional conducting wrapping of ZnO nanoparticles with graphene sheet to significantly improve the supercapacitor efficiency. The wrapping of ZnO nanospheres by graphene sheets creates highly conductive pathways by bridging individual ZnO together, thereby improving the rate and cycling performance of supercapacitors. The fabricated supercapacitor device using this ZnO–RGO hybrid exhibited a high specific capacitance of 1012 F/g at a current density of 1 A/g. Furthermore, the ZnO–RGO hybrid is capable of achieving an outstanding power density of 3534.6 W/kg, an energy density of 50.6 Wh/kg and a Coulombic efficiency of 96.4%. These findings exhibit the potential of the ZnO–RGO hybrid nanocomposites as an electrode in high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.-H. Kim, Solar energy: potential and future prospects. Renew. Sustain. Energy Rev. 82, 894–900 (2018)

    Article  Google Scholar 

  2. E. Barbour, I.A.G. Wilson, J. Radcliffe, Y. Ding, Y. Li, A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 61, 421–432 (2016)

    Article  Google Scholar 

  3. Y. Kumar, J. Ringenberg, S.S. Depuru, V.K. Devabhaktuni, J.W. Lee, E. Nikolaidis, B. Andersen, A. Afjeh, Wind energy: trends and enabling technologies. Renew. Sustain. Energy Rev. 53, 209–224 (2016)

    Article  Google Scholar 

  4. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020)

    Article  CAS  Google Scholar 

  5. N. Roy, N. Suzuki, C. Terashima, A. Fujishima, Recent improvements in the production of solar fuels: from CO2 reduction to water splitting and artificial photosynthesis. Bull. Chem. Soc. Jpn. 92, 178–192 (2019)

    Article  CAS  Google Scholar 

  6. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 22, 7168–7218 (2020)

    Article  CAS  Google Scholar 

  7. N. Mohamed, N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries. RSC Adv. 10, 21662–21685 (2020)

    Article  CAS  Google Scholar 

  8. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018)

    Article  CAS  Google Scholar 

  11. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817–2827 (2019)

    Article  Google Scholar 

  12. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, Z.L. Wang, Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Q. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Ruthenium based materials as electrode materials for supercapacitors. Chem. Eng. J. 333, 505–518 (2018)

    Article  CAS  Google Scholar 

  14. K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  15. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011)

    Article  CAS  Google Scholar 

  16. B. Vidhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff, R. Jose, High performance supercapacitor electrodes from electrospun nickel oxide nanowires. J. Alloys Compd. 610, 143–150 (2014)

    Article  CAS  Google Scholar 

  17. G.-S. Jang, S. Ameen, M.S. Akhtar, H.-S. Shin, Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588–595 (2018)

    Article  CAS  Google Scholar 

  18. C.H. Kim, B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 274, 512–520 (2015)

    Article  CAS  Google Scholar 

  19. K. Kuruppu, K. Perera, A. Chamara, G. Thiripuranathar, Flower shaped ZnO—NPs; phytofabrication, photocatalytic, fluorescence quenching, and photoluminescence activities. Nano Express 1, 020020 (2020)

    Article  Google Scholar 

  20. U. Wijesinghe, G. Thiripuranathar, H. Iqbal, F. Menaa, Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability 13, 2004 (2021)

    Article  CAS  Google Scholar 

  21. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842–852 (2009)

    Article  CAS  Google Scholar 

  22. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. H. Zafar, T. Aziz, B. Khan, A. Mannan, Ru. Rehman, M. Zia, CuO and ZnO nanoparticle application in synthetic soil modulates morphology, nutritional contents, and metal analysis of Brassica nigra. ACS Omega 5, 13566–13577 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N.K. Sidhu, A.C. Rastogi, Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res. Lett. 9, 453 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364–4369 (2012)

    Article  CAS  Google Scholar 

  26. R. Ranjithkumar, S.E. Arasi, S. Sudhahar, N. Nallamuthu, P. Devendran, P. Lakshmanan, M.K. Kumar, Enhanced electrochemical studies of ZnO/CNT nanocomposite for supercapacitor devices. Physica B 568, 51–59 (2019)

    Article  CAS  Google Scholar 

  27. Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes—a review. J. Materiomics 2, 37–54 (2016)

    Article  Google Scholar 

  28. X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7, 1850–1865 (2014)

    Article  CAS  Google Scholar 

  29. Y. Haldorai, W. Voit, J.-J. Shim, Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014)

    Article  CAS  Google Scholar 

  30. X. Du, S. Wang, Y. Liu, M. Lu, K. Wu, M. Lu, Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. J. Solid State Chem. 277, 441–447 (2019)

    Article  CAS  Google Scholar 

  31. Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6, 2037–2050 (2014)

    Article  Google Scholar 

  32. D. Navas, A. Ibañez, I. González, J.L. Palma, P. Dreyse, Controlled dispersion of ZnO nanoparticles produced by basic precipitation in solvothermal processes. Heliyon 6, e05821 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  33. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G. Jayalakshmi, K. Saravanan, J. Pradhan, P. Magudapathy, B.K. Panigrahi, Facile synthesis and enhanced luminescence behavior of ZnO:reduced graphene oxide (rGO) hybrid nanostructures. J. Lumin. 203, 1–6 (2018)

    Article  CAS  Google Scholar 

  35. P.S. Chauhan, R. Kant, A. Rai, A. Gupta, S. Bhattacharya, Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation. Mater. Sci. Semicond. Process. 89, 6–17 (2019)

    Article  CAS  Google Scholar 

  36. Abid, P. Sehrawat, S.S. Islam, P. Mishra, S. Ahmad, Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci. Rep. 8, 3537 (2018). https://www.nature.com/articles/s41598-018-21686-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25, 12030–12033 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. L. Shi, S. Gunasekaran, Preparation of pectin–ZnO nanocomposite. Nanoscale Res. Lett. 3, 491 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Prakash, D. Bahadur, The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394–1405 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. K.S. Ranjith, P. Manivel, R.T. Rajendrakumar, T. Uyar, Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 325, 588–600 (2017)

    Article  CAS  Google Scholar 

  41. A.A. Kadhem, A. Al-Nayili, Dehydrogenation of formic acid in liquid phase over Pd nanoparticles supported on reduced graphene oxide sheets. Catal. Surv. Asia 25, 324–333 (2021)

    Article  CAS  Google Scholar 

  42. A.J. Akhtar, A. Gupta, B. Kumar Shaw, S.K. Saha, Unusual dielectric response in cobalt doped reduced graphene oxide. Appl. Phys. Lett. 103, 242902 (2013)

    Article  Google Scholar 

  43. D. Wang, M. Chi, D. Zhang, D. Wu, Ammonia sensing properties of metal–organic frameworks-derived zinc oxide/reduced graphene oxide nanocomposite. J. Mater. Sci. Mater. Electron. 31, 4463–4472 (2020)

    Article  CAS  Google Scholar 

  44. L. Jing, Z. Xu, X. Sun, J. Shang, W. Cai, The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci. 180, 308–314 (2001)

    Article  CAS  Google Scholar 

  45. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337–1344 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density. Nanotechnology 28, 445401 (2017)

    Article  PubMed  Google Scholar 

  47. Z. Peng, X. Liu, H. Meng, Z. Li, B. Li, Z. Liu, S. Liu, Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 4577–4586 (2017)

    Article  PubMed  Google Scholar 

  48. J. Xue, Q. Yang, R. Guan, Q. Shen, X. Liu, H. Jia, Q. Li, High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. 256, 123591 (2020)

    Article  CAS  Google Scholar 

  49. E. Samuel, B. Joshi, Y. Kim, A. Aldalbahi, M. Rahaman, S.S. Yoon, ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 8, 3697–3708 (2020)

    Article  CAS  Google Scholar 

  50. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 7, 40167 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Sreejesh, S. Dhanush, F. Rossignol, H.S. Nagaraja, Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceram. Int. 43, 4895–4903 (2017)

    Article  CAS  Google Scholar 

  52. G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloys Compd. 806, 464–470 (2019)

    Article  CAS  Google Scholar 

  53. Y. Zhang, B. Lin, J. Wang, J. Tian, Y. Sun, X. Zhang, H. Yang, All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template. J. Mater. Chem. A 4, 10282–10293 (2016)

    Article  CAS  Google Scholar 

  54. D. Mohapatra, S. Parida, S. Badrayyana, B.K. Singh, High performance flexible asymmetric CNO-ZnO//ZnO supercapacitor with an operating voltage of 1.8V in aqueous medium. Appl. Mater. Today 7, 212–221 (2017)

    Article  Google Scholar 

  55. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2010)

    Article  CAS  Google Scholar 

  56. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interfaces 2, 821–828 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14, 831–838 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJA acknowledges Diamond Harbour Women’s University, for its infrastructural facilities. SKS acknowledges SERB File No. ECR/2018/000428 and AG acknowledges SERB File No. SRG/2019/000318 for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Jahid Akhtar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Mishra, S., Saha, S.K. et al. Boosting the Supercapacitive Performance of ZnO by 3-Dimensional Conductive Wrapping with Graphene Sheet. J Inorg Organomet Polym 32, 180–190 (2022). https://doi.org/10.1007/s10904-021-02101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02101-2

Keywords

Navigation