Skip to main content

Advertisement

Log in

Targeting the bauxite rich pockets from lateritic terrain utilizing ASTER data: A case study from Kabirdham District, Chhattisgarh, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The vast unexplored lateritic terrain of Kabirdham District, Chhattisgarh has received attention due to the presence of localized bauxite mines. In the present study, the ASTER images are processed to demarcate the ore, based on the spectral features of boehmite, gibbsite, and goethite in the VNIR–SWIR electromagnetic domain. This approach delineates the target and helps us to pinpoint the potential areas of bauxite deposits more easily from laterite. The bauxite ore is mainly enriched in Al2O3 (37.30–59.90%), TiO2 (4.30–13.40%), and Fe2O3 (1.75–29.07%), with low amounts of SiO2 (0.69–9.83%) of metallurgical grade. Boehmite is the predominant mineral in the study area followed by gibbsite. The band ratio, relative band depth images from ASTER data and the sub-pixel classifications of bauxite are mapped by using Adaptive Coherence Estimator (ACE), Matched Filtering (MF) and Linear Spectral Unmixing (LSU) methods. The bauxite-rich pixels derived from density-sliced images are overlaid on the digital elevation model (DEM) to interpret the relationship between the high-level bauxite distributions and the topographical slope/altitude. The results are validated by conducting substantial fieldwork. An integrated approach of spectral analysis with the petrological and colorimetric studies at Bamhantara block has supported the evidence of bauxite deposits and aided to find out the similar type of deposits at another lateritic province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Abrams M 2000 The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform; Int. J. Remote Sens. 21 847–859.

    Article  Google Scholar 

  • Alexander L T and Cady J G 1962 Genesis and hardening of laterite in soils; Tech. Bull. (United States Department of Agriculture) 1281 1–90.

  • Ashley R P and Abrams M J 1980 Alteration Mapping Using Multispectral Images, Cuprite Mining District, Esmeralda County, Nevada; USGS Open-File Report 80-367; U.S. Geol. Surv. Washington, D.C.

    Google Scholar 

  • Azizi H, Tarverdi M A and Akbarpour A 2010 Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran; Adv. Space Res. 46 99–109.

    Article  Google Scholar 

  • Balasubramaniam K S, Surendra M and Ravi Kumar T V 1987 Genesis of certain Bauxite profiles from India; Chem. Geol. 60 227–235.

    Article  Google Scholar 

  • Bedini E 2011 Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data; Adv. Space Res. 47 60–73.

    Article  Google Scholar 

  • Bland W and Rolls D 1998 Weathering: An introduction to the scientific principles; Arnold, London, 271p.

    Google Scholar 

  • Bourman R P 1993 Perennial problems in the study of laterite: A review; Aust. J. Earth Sci. 40 387–401.

    Article  Google Scholar 

  • Calagari A A and Abedini A 2007 Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West Azarbaidjan, Iran; J. Geochem. Explor. 94 1–18.

    Article  Google Scholar 

  • Chen X, Warner T A and Campagna D J 2007 Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada; Remote Sens. Environ. 110 344–356.

    Article  Google Scholar 

  • Crosta A P and Filho C R D S 2003 Searching for gold with ASTER; J. Earth Obs. Mag. 12 38–41.

    Google Scholar 

  • Crosta A P, De Souza Filho C R, Azevedo F and Brodie C 2003 Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis; Int. J. Remote Sens. 24 4233–4240.

    Article  Google Scholar 

  • Das B, Khan M W Y and Dhruw H 2020 Trace and REE geochemistry of bauxite deposit of Darai–Daldali plateau, Kabirdham district, Chhattisgarh, India; J. Earth Syst. Sci. 129 117.

    Article  Google Scholar 

  • Das I C 2007 Aluminous laterite and bauxite ore deposits of Orissa, India identified by spectral signatures and spectral mixtures; Indian Min. Eng. J. Mine Tech. 7 62–67.

    Google Scholar 

  • Deller M E A 2007 Facies discrimination in laterites using Landsat Thematic Mapper, ASTER and ALI data – examples from Eritrea and Arabia; Int. J. Remote Sens., http://www.tandfonline.com/loi/tres20.

  • Falcone J A and Gomez R 2005 Mapping impervious surface type and sub-pixel abundance using hyperion hyperspectral imagery; Geocarto Int. 20 3–10.

  • Feizi F and Mansuri E 2012 Identification of alteration zones with using ASTER data in a part of Qom Province, Central Iran; J. Basic. Appl. Sci. Res. 2(10) 10,173–10,184.

    Google Scholar 

  • Gabr S, Ghulam A and Kusky T 2010 Detecting areas of high-potential gold mineralization using ASTER data; Ore Geol. Rev. 38 59–69.

    Article  Google Scholar 

  • Galvao L S, Almeida-Filho R and Vitorello 2005 Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment; Int. J. Appl. Earth Obs. Geoinf. 7 107–114.

    Google Scholar 

  • Gu J, Zhilong H, Hongpeng F, Zhongguo J, Zaifei Y and Jiawei Z 2013 Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China; J. Geochem. Explor. 130 44–59.

    Article  Google Scholar 

  • Guha A and Vinod Kumar K 2015 Comparative analysis on utilisation of linear spectral unmixing and band ratio methods for processing ASTER data to delineate bauxite over a part of Chotanagpur plateau, Jharkhand, India; Geocarto Int. 31(4) 367–384.

    Article  Google Scholar 

  • Guha A, Singh V K, Parveen R, Kumar K V, Jeyaseelan A T and Dhanamjaya Rao E N 2013 Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India; Int. J. Appl. Earth Obs. Geoinf. 21 184–194, https://doi.org/10.1016/j.jag.2012.08.003.

    Article  Google Scholar 

  • Guha A, Vinod Kumar K, Porwal A, Rani K, Sahoo K C, Aneesh Kumar S R, Singaraju V, Singh R P, Khandelwal M K, Raju P V and Diwakar P G 2018 Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli Group of rocks, Rajasthan, India; Ore Geol. Rev. 108 73–87.

    Article  Google Scholar 

  • Haselwimmer C E, Riley T R and Liu J G 2011 Lithologic mapping in the Oscar II Coast area, Graham Land, Antarctic Peninsula using ASTER data; Int. J. Remote Sens. 32 2013–2035.

    Article  Google Scholar 

  • Hewson R D, Cudahy T J, Mizuhiko S, Ueda K and Mauger A J 2005 Seamless geological map generation using ASTER in the Broken Hill–Curnamona province of Australia; Remote Sens. Environ. 99 159–172.

    Article  Google Scholar 

  • Hosseinjani M and Tangestani M H 2011 Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran; Int. J. Digit. Earth 4 487–504.

    Article  Google Scholar 

  • Hubbard B E and Crowley J K 2005 Mineral mapping on the Chileanan Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions; Remote Sens. Environ. 99 173–186.

    Article  Google Scholar 

  • Kalinowski A and Oliver S A 2004 ASTER mineral index processing manual; http://www.ga.gov.au/image_cache/GA7833.pdf.

  • Kraut S, Louis L, Ronald S and Butler W 2005 The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic; IEEE Trans. Signal Process. 53.

  • Kusuma K N, Ramakrishnan D and Pandalai H S 2012 Spectral pathways for effective delineation of high-grade bauxites: A case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data; Int. J. Remote Sens. 33(22) 7273–7290, https://doi.org/10.1080/01431161.2012.700131.

    Article  Google Scholar 

  • Lakshmi S V and Tiwari R 2018 Mapping of bauxite ore using remote sensing and GIS; Int. J. Pure Appl. Math. 119 3367–3375.

  • Lillesand T M, Keifer R W and Chipman J W 2007 Remote sensing and image interpretation; John Wiley & Sons, New York.

    Google Scholar 

  • Liu K, Lin Y and Chen C S 2015 Linear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification; IEEE Trans. Geosci. Remote Sens. 53.

  • Magendran T and Sanjeevi S 2014 Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, eastern India; Int. J. Appl. Earth Obs. Geoinf. 26 413–426.

    Google Scholar 

  • Maignien R 1966 Review of research on laterites; UNESCO, Paris.

    Google Scholar 

  • McFarlene M J 1976 Laterites and Landscape; London, Academic Press, 151p.

    Google Scholar 

  • Ninomiya Y and Fu B 2005 Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared ‘radiance-at-sensor data’; Remote Sens. Environ. 99 127–139.

    Article  Google Scholar 

  • Ollier C D and Sheth H C 2008 The high Deccan duricrusts of Indian and their significance for the ‘laterite’ issue; J. Earth Syst. Sci. 117 537–551.

    Article  Google Scholar 

  • Petersen U 1971 Laterite and bauxite formation; Econ. Geol. 66 1070–1071.

    Article  Google Scholar 

  • Pour A B and Hashim M 2011 Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran; J. Asian Earth Sci. 42 1309–1323.

    Article  Google Scholar 

  • Pour A B and Hashim M 2012 The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits; Ore Geol. Rev. 44 1–9.

    Article  Google Scholar 

  • Pour A B and Hashim M 2015 Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia; Ore Geol. Rev. 64(1), https://doi.org/10.1016/j.oregeorev.2014.06.011.

  • Rani K, Guha A, Mondal S, Pal S K and Vinod Kumar K 2018 ASTER multispectral bands, ground magnetic data, ground spectroscopy and space-based EIGEN6C4 gravity data model for identifying potential zones for gold sulphide mineralization in Bhukia, Rajasthan, India; J. Appl. Geophys. 160 28–46.

    Article  Google Scholar 

  • Rao N A 1978 A report on the Reconnaissance Survey of the Bauxite Occurrences in the in Bodai–Daldali Area, Rajnandgaon District, M.P.; Rep. Geol. Surv. India (unpubl.).

  • Rao N A 1979 The investigation of the Bauxite deposits in Bodai-Daldali Area (Bodai and Kesmarda Blocks) Rajnandgaon District, M.P.; Rep. Geol. Surv. India (unpubl.).

  • Rao N A 1982 Report on the investigation of the bauxite deposits in BodaiDaldali area (Semsata and Rabda Blocks), Rajnandgaon District, M.P.; Rep. Geol. Surv. India (unpubl.).

  • Rowan L C and Mars J C 2005 Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER); Remote Sens. Environ. 99 105–126.

    Article  Google Scholar 

  • Rowan L C S and Mars R G J C 2006 Distribution of hydrothermally altered rocks in the RekoDiq, Pakistan mineralized area based on spectral analysis of ASTER data; Remote Sens. Environ. 104 74–87.

    Article  Google Scholar 

  • Rowan L C, Goetz A F H and Ashley R P 1977 Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images; Geophysics 42 522–535.

    Article  Google Scholar 

  • Roy Chowdhury M K, Venkatesh V, Anandalwar M A and Paul D K 1965 Recent concepts on the origin of Indian Laterite; http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA1/20005ab9547.pdf.

  • Sabins F F 1999 Remote sensing for mineral exploration; Ore Geol. Rev. 14 157–183.

  • Sanjeevi S 2008 Targeting limestone and bauxite deposits in southern India by spectral unmixing of hyperspectral image data; XXIstISPRS Congress Technical Commission VIII 3–11(2) 1189–1194.

    Google Scholar 

  • Schaetzl R J and Anderson S 2005 Soils: Genesis and geomorphology; Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sidibe M and Yalcin M G 2018 Petrography, mineralogy, geochemistry and genesis of the Balaya bauxite deposits in Kindia region, Maritime Guinea, West Africa; J. Afr. Earth Sci. 149 348–366.

    Article  Google Scholar 

  • Son Y S, Kang M K and Yoon W J 2014 Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data; Geosci. J. 18 295–305.

    Article  Google Scholar 

  • Sultan M, Arvidson R E, Sturchio N C and Guinness E A 1987 Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq Dome, Egypt; Geol. Soc. Am. Bull. 99 748–762.

    Article  Google Scholar 

  • Sur P and Sarkar D 2016 Final Report on Assessment of Bauxite in Bamhantara, Kabirdham (Kawardha) District, C.G.; Rep. Geol. Surv. India (unpubl.).

  • Tardy Y 1992 Diversity and terminology of laterite profile; In: Weathering, soils and paleosols (eds) Martini I P and Chesworth W, Elsevier, Amsterdam, pp. 379–405.

    Chapter  Google Scholar 

  • The USGS digital spectral library, http://speclab.cr.usgs.gov/spectral-lib.html.

  • Valeton I 1972 Bauxites (Developments in Soil Science); Elsevier, New York 1 88.

  • Yamaguchi Y, Kahle A B, Tsu H, Kawakami T and Pniel M 1998 An overview of ASTER; IEEE Trans. Geosci. Remote Sens. 36 1062–1071.

    Article  Google Scholar 

  • Zhang X, Pazner M and Duke N 2007 Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California); ISPRS J. Photogramm. Remote Sens. 62 271–282.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Geological Survey of India, Central Region Nagpur for the support of this work. The authors are extremely grateful to Late Shri A K Saha, Retired Dy. DG and HOD, GSI, CR, Nagpur for their valuable suggestions, guidance and supervision to carry out the entire course of investigation for the execution of the assigned field season program.

Author information

Authors and Affiliations

Authors

Contributions

Debjani Sarkar performed research, analysed and interpreted the data, generated the figures, and prepared the manuscript. Pradipta Sur also performed research, analysed the geochemical data and interpreted the analytical data.

Corresponding author

Correspondence to Debjani Sarkar.

Additional information

Communicated by Somnath Dasgupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Sur, P. Targeting the bauxite rich pockets from lateritic terrain utilizing ASTER data: A case study from Kabirdham District, Chhattisgarh, India. J Earth Syst Sci 130, 189 (2021). https://doi.org/10.1007/s12040-021-01688-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01688-x

Keywords

Navigation