Skip to main content
Log in

Role of long non-coding RNAs in Down syndrome patients: a transcriptome analysis study

  • Short Communication
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Down syndrome (DS) is defined by the presence of a third copy of chromosome 21. Several comorbidities can be found in these patients, such as intellectual disability (ID), muscle weakness, hypotonia, congenital heart disease, and autoimmune diseases. The molecular mechanisms playing a role in the development of such comorbidities are still unclear. The regulation and expression of genes that map to chromosome 21 are dynamic and complex, so it is important to perform global gene expression studies with high statistical power to fully characterize the transcriptome in DS patients. This study was undertaken to evaluate mRNAs and lncRNA expression in patients with DS versus a matched cohort of healthy subjects. RNA sequencing was used to perform this transcriptome study. Differential expression analysis revealed 967 transcripts with padj ≤ 0.05. Among them, 447 transcripts were differentially expressed in patients with DS compared to controls. Particularly, 203 transcripts were down expressed (151 protein-coding mRNAs, 45 lncRNAs, 1 microRNA, 1 mitochondrial tRNA, 1 ribozyme, and 1 small nuclear RNA) and 244 were over expressed (210 protein-coding mRNAs and 34 lncRNAs). Interestingly, deregulated lncRNAs are involved in pathways that play a role in developmental disorders, neurological diseases, DNA replication and repair mechanisms, and cancer development in DS patients. In conclusion, these results suggest a role of lncRNAs in the phenotype of DS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5:725–38.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao J, Zhang Z, Ren S, Zong Y, Kong X. Co-expression network analysis of Down’s syndrome based on microarray data. Exp Ther Med. 2016;12:1503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shapiro BL. Whither down syndrome critical regions? Hum Genet. 1997;99:421–3.

    Article  CAS  PubMed  Google Scholar 

  4. Li CM, Guo M, Salas M, Schupf N, Silverman W, Zigman WB, et al. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet. 2006;7:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:3.

    Article  Google Scholar 

  6. Tang Y, Schapiro MB, Franz DN, Patterson BJ, Hickey FJ, Schorry EK, et al. Blood expression profiles for tuberous sclerosis complex 2, neurofibromatosis type 1, and Down’s syndrome. Ann Neurol. 2004;56:808–14.

    Article  CAS  PubMed  Google Scholar 

  7. Altug-Teber O, Bonin M, Walter M, Mau-Holzmann UA, Dufke A, Stappert H, et al. Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res. 2007;119:171–84.

    Article  CAS  PubMed  Google Scholar 

  8. Salemi M, Longo GA, La Vignera S, Romano C, Condorelli RA, Romano C, et al. SPAG5 mRNA is over-expressed in peripheral blood leukocytes of patients with Down’s syndrome and cryptorchidism. Neurol Sci. 2013;34:549–51.

    Article  PubMed  Google Scholar 

  9. Birchler JA, Bhadra U, Bhadra MP, Auger DL. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol. 2001;234:275–88.

    Article  CAS  PubMed  Google Scholar 

  10. Costa V, Angelini C, D’Apice L, Mutarelli M, Casamassimi A, Sommese L, et al. Massive-scale RNA-seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS ONE. 2011;6:e18493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature. 2014;508:345–50.

    Article  CAS  PubMed  Google Scholar 

  12. Lu J, Mccarter M, Lian G, Esposito G, Capoccia E, Delli-Bovi LC, et al. Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet. 2016;25:1714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, et al. Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol. 2015;16:263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hamurcu Z, Demirtas H, Kumandas S. Flow cytometric comparison of RNA content in peripheral blood mononuclear cells of Down syndrome patients and control individuals. Cytometry B Clin Cytom. 2006;70:24–8.

    Article  PubMed  Google Scholar 

  15. Lane AA, Chapuy B, Lin CY, Tivey T, Li H, Townsend EC, et al. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat Genet. 2014;46:618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kahmann NH, Rake AV. Altered nucleosome spacing associated with Down syndrome. Biochem Genet. 1993;31:207–14.

    Article  CAS  PubMed  Google Scholar 

  17. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22:366–76.

    Article  CAS  PubMed  Google Scholar 

  19. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenoglio C, Ridolfi E, Galimberti D, Scarpini E. An emerging role for long non-coding RNA dysregulation in neurological disorders. Int J Mol Sci. 2013;14:20427–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Salemi M, Marchese G, Cordella A, Cannarella R, Barone C, Salluzzo MG, et al. Long non-coding RNA GAS5 expression in patients with Down syndrome. Int J Med Sci. 2020;23:1315–9.

    Article  CAS  Google Scholar 

  22. Love MI, Huber W, Anders S. Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rao PT, Guddattu V, Solomon JM. Response abilities of children with Down syndrome and other intellectual developmental disorders. Exp Brain Res. 2017;235:1411–27.

    Article  PubMed  Google Scholar 

  25. Sobol M, Klar J, Laan L, Shahsavani M, Schuster J, Annerén G, et al. Transcriptome and proteome profiling of neural induced pluripotent stem cells from individuals with Down syndrome disclose dynamic dysregulations of key pathways and cellular functions. Mol Neurobiol. 2019;56:7113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pal U, Halder P, Ray A, Sarkar S, Datta S, Ghosh P, et al. The etiology of Down syndrome: maternal MCM9 polymorphisms increase risk of reduced recombination and nondisjunction of chromosome 21 during meiosis I within oocyte. PLoS Genet. 2021;17:e1009462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Versacci P, Di Carlo D, Digilio MC, Marino B. Cardiovascular disease in Down syndrome. Curr Opin Pediatr. 2018;30:616–22.

    Article  PubMed  Google Scholar 

  28. Chin CJ, Khami MM, Husein M. A general review of the otolaryngologic manifestations of Down syndrome. Int J Pediatr Otorhinolaryngol. 2014;78:899–904.

    Article  PubMed  Google Scholar 

  29. Ross WT, Olsen M. Care of the adult patient with Down syndrome. South Med J. 2014;107:715–21.

    Article  PubMed  Google Scholar 

  30. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lau E. Non-coding RNA: zooming in on LncRNA functions. Nat Rev Genet. 2014;15:3795.

    Google Scholar 

  33. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. Elife. 2014;3:e03523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Moreau M, Benhaddou S, Dard R, Tolu S, Hamzé R, Vialard F, et al. Metabolic diseases and Down syndrome: how are they linked together? Biomedicines. 2021;22:221.

    Article  CAS  Google Scholar 

  35. Sheridan R, Llerena J, Matkins S, Debenham P, Cawood A, Bobrow M. Fertility in a male with trisomy 21. J Med Genet. 1989;26:294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zühlke C, Thies U, Braulke I, Reis A, Schirren C. Down syndrome and male fertility: PCR derived fingerprinting, serological and andrological investigations. Clin Genet. 1994;46:324–6.

    Article  PubMed  Google Scholar 

  37. Pradhan M, Dalal A, Khan F, Agrawal S. Fertilty in men with Down syndrome: a case report. Fertil Steril. 2006;86:e1765.1-3.

    Article  Google Scholar 

  38. Stearns PE, Droulard KE, Sahhar FH. Studies bearing on fertility of male and female mongoloids. Am J Ment Defic. 1961;65:37–41.

    Google Scholar 

  39. Schupf N, Zigman WB, Kapell D, Lee JH, Kline J, Levin B. Early menopause in women with Down’s syndrome. J Intellect Disabil Res. 1997;41:264–7.

    Article  PubMed  Google Scholar 

  40. Højager B, Peters H, Byskov AG, Faber M. Follicular development in ovaries of children with Down’s syndrome. Acta Paediatr Scand. 1978;67:637–43.

    Article  PubMed  Google Scholar 

  41. Rethoré MO, Rouëssé J, Satgé D. Cancer screening in adults with Down syndrome, a proposal. Eur J Med Genet. 2020;63:103783.

    Article  PubMed  Google Scholar 

  42. Liao W, Liu Y. Treatment outcomes in children with Acute lymphoblastic leukemia with versus without coexisting Down’s syndrome: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99:e21015.

    Article  Google Scholar 

  43. Massara M, Bonavita O, Mantovani A, Locati M, Bonecchi R. Atypical chemokine receptors in cancer: friends or foes? J Leukoc Biol. 2016;99:927–33.

    Article  CAS  PubMed  Google Scholar 

  44. Zu G, Luo B, Yang Y, Tan Y, Tang T, Zhang Y, et al. Meta-analysis of the prognostic value of C-C chemokine receptor type 7 in patients with solid tumors. Cancer Manag Res. 2019;11:1881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salemi M, Cannarella R, Marchese G, Salluzzo MG, Ravo M, Barone C, et al. CCR3 gene overexpression in patients with Down syndrome. Mol Biol Rep. 2021;48:5335–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Salemi.

Ethics declarations

Conflict of interest

None.

Ethical approval

The study was approved on June 03, 2017 by the local IRB (protocol n. 2017/05/31/CE-IRCCS-OASI/9).

Informed consent

All the study participants or their legal guardians signed informed consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemi, M., Cannarella, R., Marchese, G. et al. Role of long non-coding RNAs in Down syndrome patients: a transcriptome analysis study. Human Cell 34, 1662–1670 (2021). https://doi.org/10.1007/s13577-021-00602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00602-3

Keywords

Navigation