Skip to main content
Log in

Impact of emulsion drops on a plane solid: Effect of composition and wall temperature

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper reports the impact of water-in-Jatropha biodiesel emulsion drops on a heated solid surface. The role of the surface temperature (TS) and the composition of the emulsion on the impact dynamics are examined. Experiments are conducted taking three low water content emulsions samples for five surface temperatures, and the results are compared with pure Jatropha biodiesel (JBD) from the available literature. Due to the early evaporation of water micro-droplets inside the emulsion drop, internal vapor pressure is formed. The internal vapor pressure and the thin vapor film formed beneath the drop due to the high vaporization rate play a crucial role in the impact of emulsions. Emulsification results in a decrease in the Leidenfrost temperature when compared with JBD, affecting the sticking and bouncing behavior. The normalized average spreading velocity and the average receding velocity increase with TS, and their maxima are found at higher TS in case of emulsions as compared to JBD. Several differences are observed in the impact morphology of the emulsions when compared to JBD. The internal vapor pressure overcomes the viscous dissipation for the emulsions at higher TS resulting in a higher maximum spreading factor and spreading velocity than JBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bodaghkhani A, Duan X (2020) Water droplet freezing on cold surfaces with distinct wetabilities. Heat Mass Transf. https://doi.org/10.1007/s00231-020-02984-w

    Article  Google Scholar 

  2. Yoo H, Kim C (2015) Experimental studies on formation, spreading and drying of inkjet drop of colloidal suspensions. Coll Surf A 468:234–245

    Google Scholar 

  3. Shen M, Li BQ, Yang Q, Bai Y, Wang Y, Zhu S, Zhao B, Li T, Hu Y (2019) A Modified Phase-Field Three-dimensional Model for Droplet Impact with Solidification. Int J Multiphase Flow 116:51–66

    MathSciNet  Google Scholar 

  4. Comiskey PM, Yarin AL, Attinger D (2019) Hydrodynamics of forward blood spattering caused by a bullet of general shape. Phys Fluids 31:084103

  5. Safavi M, Nourazar SS (2018) Experimental, analytical, and numerical study of droplet impact on a horizontal fiber. Int J Multiphase Flow 113:316–324

    Google Scholar 

  6. Abolghasemibizaki M, Dilmaghani N, Mohammadi R, Castano CE (2019) Viscous Droplet Impact on Non-wettable Textured Surfaces. Langmuir 35:10752–10761

    Google Scholar 

  7. Singh RK, Mandal DK (2020) Air assisted impact of drops: The effect of surface wettability. Int J Multiphase Flow 126:103241

  8. Josserand C, Thoroddsen S (2016) Drop Impact on a Solid Surface. Annu Rev Fluid Mech 48(1):365–391

    MathSciNet  MATH  Google Scholar 

  9. Moreira ALN, Moita AS, Panao MR (2010) Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog Energy Combust Sci 36(5):554–580

    Google Scholar 

  10. Yarin AL (2006) Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncin. Annu Rev Fluid Mech 38(1):159–192

    MathSciNet  MATH  Google Scholar 

  11. Rioboo R, Tropea C, Marengo M (2001) Outcomes from a Drop Impact on Solid Surfaces. At Sprays 11(2):155–165

    Google Scholar 

  12. Negeed ESR, Ishihara N, Tagashira K, Hidaka S, Kohno M (2010) Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet. Int J Therm Sci 49(12):2250–2271

    Google Scholar 

  13. Cai Y, Luo X, Tian Y, Murad HRM, Chang W, Yi Q (2019) Dynamic behaviors of water droplets impacting on laser ablated surfaces. Coll Surf A 580:123743

  14. Breitenbach J, Roisman IV, Tropea C (2018) From drop impact physics to spray cooling models: a critical review. Exp Fluids 59(3):55

    Google Scholar 

  15. Almohammadi H, Amirfazli A (2019) Droplet impact: Viscosity and wettability effects on splashing. J Colloid Interface Sci 553:22–30

    Google Scholar 

  16. Yao SC, Cai KY (1988) The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles. Exp Therm Fluid Sci 1(4):363–371

    Google Scholar 

  17. Limbeek MAJV, Hoefnagels PBJ, Shirota M, Sun C, Lohse D (2018) Boiling regimes of impacting drops on a heated substrate under reduced pressure. Phys Rev Fluids 3:053601

  18. Liang G, Mudawar M (2017) Review of spray cooling – Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transf 115:1174–1205

    Google Scholar 

  19. Liang G, Mudawar M (2017) Review of spray cooling – Part 2: high temperature boiling regimes and quenching applications. Int J Heat Mass Transf 115:1206–1222

    Google Scholar 

  20. Breitenbach J, Roisman IV, Tropea C (2017) Heat transfer in the film boiling regime: single drop impact and spray cooling. Int J Heat Mass Transf 110:34–42

    Google Scholar 

  21. Deendarliant PMR, Prakoso T, Indarto MWH, Widyaparaga A (2021) Contact angle dynamics during the impact of single water droplet onto a hot flat practical stainless steel surface under medium Weber numbers. Heat Mass Transf. https://doi.org/10.1007/s00231-020-03010-9

    Article  Google Scholar 

  22. Prunet-Foch B, Legay F, Vignes-Adler M, Delmotte C (1998) Impacting emulsion drop on a steel plate: Influence of the solid substrate. J Colloid Interface Sci 199:151–168

    Google Scholar 

  23. Jadidbonab H, Malgarinos I, Karathanassis I, Mitroglou N, Gavaises M (2018) We-T classification of diesel fuel droplet impact regimes. Proc R Soc A 474(2215):20170759

    Google Scholar 

  24. Kumar A, Mandal DK (2020) Influence of the surface temperature on the spreading and receding dynamics of an impacting biodiesel drop. Heat Mass Transf 56(2):445–457

    Google Scholar 

  25. Sreenivasan A, Deivandren S (2020) Splashing of fuel drops impacting on heated solid surfaces. Phys Fluids 32(3):032104

  26. Sargunanathan S, Elango A, Mohideen ST (2016) Performance enhancement of solar photovoltaic cells using effective cooling methods: a review. Renew Sustain Energy Rev 64:382–393

    Google Scholar 

  27. Börnhorst M, Deutschmann O (2018) Single droplet impingement of urea water solution on a heated substrate. Int J of Heat Fluid Flow 69:55–61

    Google Scholar 

  28. Pasandideh-Fard M, Pershin V, Chandra S, Mostaghimi J (2002) Splat shapes in a thermal spray coating process: Simulations and experiments. J Therm Spray Tech 11(2):206–217

    Google Scholar 

  29. Bertola V( 2015) An impact regime map for water drops impacting on heated surfaces. Int J Heat Mass Transf 85:430–437

  30. Liang G, Mudawar I (2017) Review of drop impact on heated walls. Int J Heat Mass Trans 106:103–126

    Google Scholar 

  31. Mitrakusuma WH, Kamal S, Indarto, Susila MD, Hermawan, Deendarlianto (2017) The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers. Heat Mass Transf. https://doi.org/10.1007/s00231-017-2053-0

  32. Liang G, Shen S, Guo Y, Zhang J (2016) Boiling from liquid drops impact on a heated wall. Int J Heat Mass Transf 100:48–57

    Google Scholar 

  33. Roisman IV, Breitenbach J, Tropea C (2018) Thermal atomization of a liquid drop after impact onto a hot substrate. J of Fluid Mech 842:87–102

    Google Scholar 

  34. Leidenfrost JG (1966) On the fixation of water in diverse fire. Int J Heat Mass Trans 9(11):1153–1166

    Google Scholar 

  35. Quere D (2013) Leidenfrost Dynamics. Annu Rev Fluid Mech 45(1):197–215

    MathSciNet  MATH  Google Scholar 

  36. Moreau F, Colinet P, Dorbolo S (2019) Explosive Leidenfrost droplets. Phys Rev Fluids 4:013602

  37. Breitenbach J, Kissing J, Roisman IV, Tropea C (2018) Characterization of secondary droplets during thermal atomization regime. Exp Th Fluid Sci 98:516–522

    Google Scholar 

  38. Chen RH, Chiu SL, Lin TH (2007) Resident time of a compound drop impinging on a hot surface. Appl Therm Eng 27(11–12):2079–2085

    Google Scholar 

  39. Kumar A, Mandal DK (2021) Residence time of emulsion drops on an inclined surface above Leidenfrost temperature. At Sprays 31(1):1–10

    Google Scholar 

  40. Chaze W, Caballina O, Castanet G, Lemoine F (2017) Spatially and temporally resolved measurements of the temperature inside droplets impinging on a hot solid surface. Exp Fluids 58:96

    Google Scholar 

  41. Breitenbach J, Roisman IV, Tropea C (2017) Drop collision with a hot, dry solid substrate: Heat transfer during nucleate boiling. Phys Rev Fluids 2(7):074301

  42. Liang G, Mu X, Guo Y, Shen S, Quan S, Zhang J (2016) Contact vaporization of an impacting drop on heated surfaces. Exp Thermal Fluid Sci 74:73–80

    Google Scholar 

  43. Park J, Kim DE (2019) Dynamic Leidenfrost behaviors of different fluid drops on superheated surface: Scaling for vapor film thickness. Phys Fluids 31(10):101702

  44. Castanet G, Chaze W, Caballina O, Collignon R, Lemoine F (2018) Transient evolution of the heat transfer and the vapor film thickness at the drop impact in the regime of film boiling. Phys Fluids 30(12):122109

  45. Bernardin JD, Stebbins CJ, Mudawar I (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int J Heat Mass Transf 40(2):247–267

    Google Scholar 

  46. Bernardin JD, Mudawar I (1999) The Leidenfrost point: experimental study and assessment of existing models. J Heat Transf 121(4):894–903

    Google Scholar 

  47. Burton JC, Sharpe AL, Van Der Veen RCA, Franco A, Nagel SR (2012) Geometry of the vapor layer under a Leidenfrost drop. Phys Rev Lett 109:074301

  48. Bernardin JD, Mudawar I (2004) A Leidenfrost point model for impinging droplets and sprays. J Heat Transf 126(2):272–278

    Google Scholar 

  49. Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256:1539–1541

    Google Scholar 

  50. Lagubeau G, Le Merrer M, Clanet C, Quere D (2011) Leidenfrost on a ratchet. Nat Phys 7(5):395–398

    Google Scholar 

  51. Tenzer FM, Roisman IV, Tropea C (2019) Fast transient spray cooling of a hot thick target. J Fluid Mech 881:84–103

    Google Scholar 

  52. Zhang JM, Li EQ, Thoroddsen ST (2020) Fine radial jetting during the impact of compound drops. J Fluid Mech 883:A46

    Google Scholar 

  53. Kumar A, Mandal DK (2019) Impact of emulsion drops on a solid surface: The effect of viscosity. Phys. Fluids 31(10):102106

  54. Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Google Scholar 

  55. Moussa O, Tarlet D, Massoli P, Bellettre J (2018) Parametric study of the micro-explosion occurrence of W/O emulsions. Int J Thermal Sci 133:90–97

    Google Scholar 

  56. Moussa O, Francelino D, Tarlet D, Massoli P, Bellettre J (2019) Insight of a water-in-oil emulsion drop under Leidenfrost heating using laser-induced fluorescence optical diagnostics. At Sprays 29(1):1–17

    Google Scholar 

  57. Moussa O, Tarlet D, Massoli P, Bellettre J (2020) Investigation on the conditions leading to the micro-explosion of emulsified fuel droplet using two colors LIF method. Exp Thermal Fluid Sci 116:110106

  58. Shirota M, Van Limbeek MAJ, Sun C, Prosperetti A, Lohse D (2016) Dynamic Leidenfrost Effect: Relevant Time and Length Scales. Phys Rev Lett 116:064501

Download references

Acknowledgements

The work is supported by the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST), Government of India (Project number: ECR / 2016 / 000026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 513 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mandal, D.K. Impact of emulsion drops on a plane solid: Effect of composition and wall temperature. Heat Mass Transfer 58, 505–529 (2022). https://doi.org/10.1007/s00231-021-03129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03129-3

Navigation