Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation

Aurélie Denys1, Peter Brown2, and Anthony Leverrier1

1Inria, France
2ENS Lyon, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We establish an analytical lower bound on the asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation of coherent states. Previously, such bounds were only available for protocols with a Gaussian modulation, and numerical bounds existed in the case of simple phase-shift-keying modulations. The latter bounds were obtained as a solution of convex optimization problems and our new analytical bound matches the results of Ghorai $\textit{et al.}$ (2019), up to numerical precision. The more relevant case of quadrature amplitude modulation (QAM) could not be analyzed with the previous techniques, due to their large number of coherent states. Our bound shows that relatively small constellation sizes, with say 64 states, are essentially sufficient to obtain a performance close to a true Gaussian modulation and are therefore an attractive solution for large-scale deployment of continuous-variable quantum key distribution. We also derive similar bounds when the modulation consists of arbitrary states, not necessarily pure.

Quantum key distribution (QKD) allows two distant agents to generate a shared secret key using an untrusted quantum channel and classical communication. It is a promising near-term application of quantum technologies, enabling information-theoretically secure communication. QKD schemes that operate using continuous variable (CV) systems are particularly interesting in this regard as they can likely be integrated into existing telecom networks. However, analyzing CV QKD protocols is difficult due to the infinite dimensional nature of the underlying Fock space and a pressing open problem is how to obtain reasonably tight bounds on the secret key rates for general protocols.
In this work, we provide a solution to this problem by deriving an explicit analytical lower bound on the asymptotic secret key rate of any standard one-way CV QKD protocol. Our analytical results allow us to account for imperfections in the state preparation and also straightforwardly to optimize the preparation constellations, further improving performance of the protocols.

► BibTeX data

► References

[1] C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, 1984. 10.1016/​j.tcs.2014.05.025.
https:/​/​doi.org/​10.1016/​j.tcs.2014.05.025

[2] Kamil Brádler and Christian Weedbrook. Security proof of continuous-variable quantum key distribution using three coherent states. Phys. Rev. A, 97 (2): 022310, 2018. 10.1103/​PhysRevA.97.022310.
https:/​/​doi.org/​10.1103/​PhysRevA.97.022310

[3] Nicolas J Cerf, Marc Levy, and Gilles Van Assche. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A, 63 (5): 052311, 2001. 10.1103/​PhysRevA.63.052311.
https:/​/​doi.org/​10.1103/​PhysRevA.63.052311

[4] Matthias Christandl, Robert König, and Renato Renner. Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett., 102 (2): 020504, 2009. 10.1103/​PhysRevLett.102.020504.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.020504

[5] Aurélie Denys, Peter Brown, and Anthony Leverrier. Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation of coherent states. arXiv preprint arXiv:2011.09746v1, 2021.
arXiv:2011.09746v1

[6] I. Devetak and A. Winter. Distillation of secret key and entanglement from quantum states. In Proc. R. Soc. A, volume 461, pages 207–235, 2005. 10.1098/​rspa.2004.1372.
https:/​/​doi.org/​10.1098/​rspa.2004.1372

[7] Frederic Dupuis, Omar Fawzi, and Renato Renner. Entropy accumulation. Communications in Mathematical Physics, 379: 867–913, 2020. 10.1007/​s00220-020-03839-5.
https:/​/​doi.org/​10.1007/​s00220-020-03839-5

[8] Radim Filip. Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A, 77: 022310, Feb 2008. 10.1103/​PhysRevA.77.022310.
https:/​/​doi.org/​10.1103/​PhysRevA.77.022310

[9] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner. Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 109: 100502, 2012. 10.1103/​PhysRevLett.109.100502.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.100502

[10] Raúl García-Patrón and Nicolas J. Cerf. Unconditional Optimality of Gaussian Attacks against Continuous-Variable Quantum Key Distribution. Phys. Rev. Lett., 97 (19): 190503, 2006. 10.1103/​PhysRevLett.97.190503.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.190503

[11] Amirhossein Ghazisaeidi et al. Advanced C$+$L-Band Transoceanic Transmission Systems Based on Probabilistically Shaped PDM-64QAM. J. Lightwave Technol., 35 (7): 1291–1299, Apr 2017. 10.1109/​JLT.2017.2657329.
https:/​/​doi.org/​10.1109/​JLT.2017.2657329

[12] Shouvik Ghorai, Philippe Grangier, Eleni Diamanti, and Anthony Leverrier. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X, 9: 021059, Jun 2019. 10.1103/​PhysRevX.9.021059.
https:/​/​doi.org/​10.1103/​PhysRevX.9.021059

[13] F. Grosshans and P. Grangier. Reverse reconciliation protocols for quantum cryptography with continuous variables. Arxiv preprint quant-ph/​0204127, 2002a.
arXiv:quant-ph/0204127

[14] F. Grosshans, N.J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier. Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Information and Computation, 3 (Sp. Iss. SI): 535–552, 2003.

[15] Frédéric Grosshans and Philippe Grangier. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett., 88 (5): 057902, 2002b. 10.1103/​PhysRevLett.88.057902.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.057902

[16] Matthias Heid and Norbert Lütkenhaus. Security of coherent-state quantum cryptography in the presence of Gaussian noise. Phys. Rev. A, 76 (2): 022313, 2007. 10.1103/​PhysRevA.76.022313.
https:/​/​doi.org/​10.1103/​PhysRevA.76.022313

[17] Takuya Hirano, H Yamanaka, M Ashikaga, T Konishi, and R Namiki. Quantum cryptography using pulsed homodyne detection. Physical Review A, 68 (4): 042331, 2003. 10.1103/​PhysRevA.68.042331.
https:/​/​doi.org/​10.1103/​PhysRevA.68.042331

[18] Fanny Jardel, Tobias A Eriksson, Cyril Méasson, Amirhossein Ghazisaeidi, Fred Buchali, Wilfried Idler, and Joseph J Boutros. Exploring and experimenting with shaping designs for next-generation optical communications. Journal of Lightwave Technology, 36 (22): 5298–5308, 2018. 10.1109/​JLT.2018.2871248.
https:/​/​doi.org/​10.1109/​JLT.2018.2871248

[19] Paul Jouguet, Sébastien Kunz-Jacques, and Anthony Leverrier. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A, 84: 062317, Dec 2011. 10.1103/​PhysRevA.84.062317.
https:/​/​doi.org/​10.1103/​PhysRevA.84.062317

[20] Eneet Kaur, Saikat Guha, and Mark M Wilde. Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution. Physical Review A, 103 (1): 012412, 2021. 10.1103/​PhysRevA.103.012412.
https:/​/​doi.org/​10.1103/​PhysRevA.103.012412

[21] Felipe Lacerda, Joseph M Renes, and Volkher B Scholz. Coherent state constellations for Bosonic Gaussian channels. In Information Theory (ISIT), 2016 IEEE International Symposium on, pages 2499–2503. IEEE, 2016. 10.1109/​ISIT.2016.7541749.
https:/​/​doi.org/​10.1109/​ISIT.2016.7541749

[22] Anthony Leverrier. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett., 114: 070501, 2015. 10.1103/​PhysRevLett.114.070501.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.070501

[23] Anthony Leverrier. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett., 118: 200501, May 2017. 10.1103/​PhysRevLett.118.200501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.200501

[24] Anthony Leverrier. SU(p, q) coherent states and a Gaussian de Finetti theorem. Journal of Mathematical Physics, 59 (4): 042202, 2018. 10.1063/​1.5007334.
https:/​/​doi.org/​10.1063/​1.5007334

[25] Anthony Leverrier and Philippe Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett., 102: 180504, May 2009. 10.1103/​PhysRevLett.102.180504.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.180504

[26] Anthony Leverrier and Philippe Grangier. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A, 83: 042312, Apr 2011. 10.1103/​PhysRevA.83.042312.
https:/​/​doi.org/​10.1103/​PhysRevA.83.042312

[27] Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus. Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X, 9: 041064, Dec 2019. 10.1103/​PhysRevX.9.041064.
https:/​/​doi.org/​10.1103/​PhysRevX.9.041064

[28] S. Lorenz, N. Korolkova, and G. Leuchs. Continuous-variable quantum key distribution using polarization encoding and post selection. Appl. Phys. B, 79 (3): 273–277, 2004. 10.1007/​s00340-004-1574-7.
https:/​/​doi.org/​10.1007/​s00340-004-1574-7

[29] Hossein Mani, Tobias Gehring, Philipp Grabenweger, Bernhard Ömer, Christoph Pacher, and Ulrik Lund Andersen. Multiedge-type low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A, 103: 062419, Jun 2021. 10.1103/​PhysRevA.103.062419. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.103.062419.
https:/​/​doi.org/​10.1103/​PhysRevA.103.062419

[30] Takaya Matsuura, Kento Maeda, Toshihiko Sasaki, and Masato Koashi. Finite-size security of continuous-variable quantum key distribution with digital signal processing. Nature communications, 12 (1): 1–13, 2021. 10.1038/​s41467-020-19916-1.
https:/​/​doi.org/​10.1038/​s41467-020-19916-1

[31] Mario Milicevic, Feng Chen, Lei M Zhang, and P Glenn Gulak. Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Information, 4: 1–9, 2018. 10.1038/​s41534-018-0070-6.
https:/​/​doi.org/​10.1038/​s41534-018-0070-6

[32] Miguel Navascués, Frédéric Grosshans, and Antonio Acín. Optimality of Gaussian Attacks in Continuous-Variable Quantum Cryptography. Phys. Rev. Lett., 97 (19): 190502, 2006. 10.1103/​PhysRevLett.97.190502.
https:/​/​doi.org/​10.1103/​PhysRevLett.97.190502

[33] Panagiotis Papanastasiou and Stefano Pirandola. Continuous-variable quantum cryptography with discrete alphabets: Composable security under collective Gaussian attacks. Phys. Rev. Research, 3: 013047, Jan 2021. 10.1103/​PhysRevResearch.3.013047.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.013047

[34] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12 (4): 1012–1236, Dec 2020. 10.1364/​AOP.361502.
https:/​/​doi.org/​10.1364/​AOP.361502

[35] Stefano Pirandola, Carlo Ottaviani, Gaetana Spedalieri, Christian Weedbrook, Samuel L Braunstein, Seth Lloyd, Tobias Gehring, Christian S Jacobsen, and Ulrik L. Andersen. High-rate measurement-device-independent quantum cryptography. Nat. Photon., 9 (6): 397–402, 2015. 10.1038/​nphoton.2015.83.
https:/​/​doi.org/​10.1038/​nphoton.2015.83

[36] R. Renner. Symmetry of large physical systems implies independence of subsystems. Nat. Phys., 3 (9): 645–649, 2007. 10.1038/​nphys684.
https:/​/​doi.org/​10.1038/​nphys684

[37] R. Renner and J. I. Cirac. de Finetti Representation Theorem for Infinite-Dimensional Quantum Systems and Applications to Quantum Cryptography. Phys. Rev. Lett., 102 (11): 110504, 2009. 10.1103/​PhysRevLett.102.110504.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.110504

[38] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81 (3): 1301, 2009. 10.1103/​RevModPhys.81.1301.
https:/​/​doi.org/​10.1103/​RevModPhys.81.1301

[39] Denis Sych and Gerd Leuchs. Coherent state quantum key distribution with multi letter phase-shift keying. New J. Phys., 12 (5): 053019, 2010. 10.1088/​1367-2630/​12/​5/​053019.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​5/​053019

[40] Marco Tomamichel and Renato Renner. Uncertainty relation for smooth entropies. Phys. Rev. Lett., 106: 110506, Mar 2011. 10.1103/​PhysRevLett.106.110506.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.110506

[41] Twesh Upadhyaya, Thomas van Himbeeck, Jie Lin, and Norbert Lütkenhaus. Dimension reduction in quantum key distribution for continuous- and discrete-variable protocols. PRX Quantum, 2: 020325, 2021. 10.1103/​PRXQuantum.2.020325.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.020325

[42] Vladyslav C. Usenko and Radim Filip. Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A, 81: 022318, Feb 2010. 10.1103/​PhysRevA.81.022318.
https:/​/​doi.org/​10.1103/​PhysRevA.81.022318

[43] Christian Weedbrook, Andrew M. Lance, Warwick P. Bowen, Thomas Symul, Timothy C. Ralph, and Ping Koy Lam. Quantum cryptography without switching. Phys. Rev. Lett., 93 (17): 170504, 2004. 10.1103/​PhysRevLett.93.170504.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.170504

[44] Christian Weedbrook, Stefano Pirandola, Seth Lloyd, and Timothy C. Ralph. Quantum cryptography approaching the classical limit. Phys. Rev. Lett., 105: 110501, Sep 2010. 10.1103/​PhysRevLett.105.110501.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.110501

[45] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84: 621–669, 2012. 10.1103/​RevModPhys.84.621.
https:/​/​doi.org/​10.1103/​RevModPhys.84.621

[46] Yihong Wu and Sergio Verdú. The impact of constellation cardinality on Gaussian channel capacity. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 620–628, 2010. 10.1109/​ALLERTON.2010.5706965.
https:/​/​doi.org/​10.1109/​ALLERTON.2010.5706965

[47] Yi-Bo Zhao, Matthias Heid, Johannes Rigas, and Norbert Lütkenhaus. Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A, 79: 012307, 2009. 10.1103/​PhysRevA.79.012307.
https:/​/​doi.org/​10.1103/​PhysRevA.79.012307

Cited by

[1] Tianyi Wang, Ming Li, and Xu Wang, "Security analysis of discretized polar modulation continuous-variable quantum key distribution", Optics Express 30 20, 36122 (2022).

[2] Qin Liao, Xiaoqian Liu, Bo Ou, and Xiquan Fu, "Continuous-Variable Quantum Secret Sharing Based on Multi-Ring Discrete Modulation", IEEE Transactions on Communications 71 10, 6051 (2023).

[3] Thang V. Nguyen, Hoa T. Le, Hien T. T. Pham, Vuong Mai, and Ngoc T. Dang, "Enhancing Design and Performance Analysis of Satellite Entanglement-Based CV-QKD/FSO Systems", IEEE Access 11, 112097 (2023).

[4] N. Ivankov, R. Goncharov, and D. Tupyakov, 2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) 1 (2023) ISBN:979-8-3503-4829-3.

[5] Nitin Jain, Hou-Man Chin, Hossein Mani, Cosmo Lupo, Dino Solar Nikolic, Arne Kordts, Stefano Pirandola, Thomas Brochmann Pedersen, Matthias Kolb, Bernhard Ömer, Christoph Pacher, Tobias Gehring, and Ulrik L. Andersen, "Practical continuous-variable quantum key distribution with composable security", Nature Communications 13 1, 4740 (2022).

[6] Wen-Bo Liu, Chen-Long Li, Yuan-Mei Xie, Chen-Xun Weng, Jie Gu, Xiao-Yu Cao, Yu-Shuo Lu, Bing-Hong Li, Hua-Lei Yin, and Zeng-Bing Chen, "Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance", PRX Quantum 2 4, 040334 (2021).

[7] Wen-Bo Liu, Chen-Long Li, Zhi-Ping Liu, Min-Gang Zhou, Hua-Lei Yin, and Zeng-Bing Chen, "Theoretical development of discrete-modulated continuous-variable quantum key distribution", Frontiers in Quantum Science and Technology 1, 985276 (2022).

[8] Florian Kanitschar, Ian George, Jie Lin, Twesh Upadhyaya, and Norbert Lütkenhaus, "Finite-Size Security for Discrete-Modulated Continuous-Variable Quantum Key Distribution Protocols", PRX Quantum 4 4, 040306 (2023).

[9] Dengke Qi, Xiangyu Wang, Ziyang Chen, Yueming Lu, and Song Yu, "High-Performance Intermediate-Frequency Balanced Homodyne Detector for Local Local Oscillator Continuous-Variable Quantum Key Distribution", Symmetry 15 7, 1314 (2023).

[10] Cosmo Lupo and Yingkai Ouyang, "Quantum Key Distribution with Nonideal Heterodyne Detection: Composable Security of Discrete-Modulation Continuous-Variable Protocols", PRX Quantum 3 1, 010341 (2022).

[11] Daniel Pereira, Margarida Almeida, Armando N. Pinto, and Nuno A. Silva, "Impact of transmitter imbalances on the security of continuous variables quantum key distribution", EPJ Quantum Technology 10 1, 20 (2023).

[12] Margarida Almeida, Daniel Pereira, Nelson J. Muga, Margarida Facão, Armando N. Pinto, and Nuno A. Silva, "Secret key rate of multi-ring M-APSK continuous variable quantum key distribution", Optics Express 29 23, 38669 (2021).

[13] Yan Pan, Heng Wang, Yun Shao, Yaodi Pi, Ting Ye, Yang Li, Wei Huang, and Bingjie Xu, 2023 Optical Fiber Communications Conference and Exhibition (OFC) 1 (2023).

[14] Daniel Pereira, Margarida Almeida, Margarida Facão, Armando N. Pinto, and Nuno A. Silva, "Probabilistic shaped 128-APSK CV-QKD transmission system over optical fibres", Optics Letters 47 15, 3948 (2022).

[15] Aida Garcia-Callejo, Andres Ruiz-Chamorro, Daniel Cano, and Veronica Fernandez, Lecture Notes in Networks and Systems 594, 1073 (2023) ISBN:978-3-031-21332-8.

[16] Francois Roumestan, Amirhossein Ghazisaeidi, Jeremie Renaudier, Luis Trigo Vidarte, Eleni Diamanti, and Philippe Grangier, 2021 European Conference on Optical Communication (ECOC) 1 (2021) ISBN:978-1-6654-3868-1.

[17] Yan Pan, Heng Wang, Yun Shao, Yaodi Pi, Yang Li, Bin Liu, Wei Huang, and Bingjie Xu, "Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system", Optics Letters 47 13, 3307 (2022).

[18] Florian Kanitschar and Christoph Pacher, "Optimizing Continuous-Variable Quantum Key Distribution with Phase-Shift Keying Modulation and Postselection", Physical Review Applied 18 3, 034073 (2022).

[19] Ryo Namiki, "Security against Collective Attacks for a Continuous-Variable Quantum Key Distribution Protocol Using Homodyne Detection and Postselection", Journal of the Physical Society of Japan 92 1, 014001 (2023).

[20] Roman Goncharov, Irina Vorontsova, Daniil Kirichenko, Ilya Filipov, Iurii Adam, Vladimir Chistiakov, Semyon Smirnov, Boris Nasedkin, Boris Pervushin, Daria Kargina, Eduard Samsonov, and Vladimir Egorov, "The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol", Optics 3 4, 338 (2022).

[21] Shuaishuai Liu, Zhenguo Lu, Pu Wang, Yan Tian, Xuyang Wang, and Yongmin Li, "Experimental demonstration of multiparty quantum secret sharing and conference key agreement", npj Quantum Information 9 1, 92 (2023).

[22] Daniel Pereira, Armando N. Pinto, and Nuno A. Silva, "Polarization Diverse True Heterodyne Receiver Architecture for Continuous Variable Quantum Key Distribution", Journal of Lightwave Technology 41 2, 432 (2023).

[23] Heng Wang, Yan Pan, Yun Shao, Yaodi Pi, Ting Ye, Yang Li, Tao Zhang, Jinlu Liu, Jie Yang, Li Ma, Wei Huang, and Bingjie Xu, "Performance analysis for OFDM-based multi-carrier continuous-variable quantum key distribution with an arbitrary modulation protocol", Optics Express 31 4, 5577 (2023).

[24] Tianyi Wang, Ming Li, Xu Wang, and Lei Hou, "Parameter estimation calibration of discretized polar modulation continuous-variable quantum key distribution", Optics Express 31 13, 21014 (2023).

[25] Bo Lan and Xue-xiang Xu, "Multi-Headed Symmetrical Superpositions of Coherent States", International Journal of Theoretical Physics 61 5, 148 (2022).

[26] M N Notarnicola, M Jarzyna, S Olivares, and K Banaszek, "Optimizing state-discrimination receivers for continuous-variable quantum key distribution over a wiretap channel", New Journal of Physics 25 10, 103014 (2023).

[27] Qin Liao, Zheng Wang, Haijie Liu, Yiyu Mao, and Xiquan Fu, "Detecting practical quantum attacks for continuous-variable quantum key distribution using density-based spatial clustering of applications with noise", Physical Review A 106 2, 022607 (2022).

[28] Lu Fan, Yiming Bian, Mingze Wu, Yichen Zhang, and Song Yu, "Quantum Hacking Against Discrete-Modulated Continuous-Variable Quantum Key Distribution Using Modified Local Oscillator Intensity Attack with Random Fluctuations", Physical Review Applied 20 2, 024073 (2023).

[29] Hou-Man Chin, Nitin Jain, Ulrik L Andersen, Darko Zibar, and Tobias Gehring, "Digital synchronization for continuous-variable quantum key distribution", Quantum Science and Technology 7 4, 045006 (2022).

[30] Takaya Matsuura, Springer Theses 33 (2023) ISBN:978-981-19-8287-3.

[31] Min-Gang Zhou, Zhi-Ping Liu, Wen-Bo Liu, Chen-Long Li, Jun-Lin Bai, Yi-Ran Xue, Yao Fu, Hua-Lei Yin, and Zeng-Bing Chen, "Neural network-based prediction of the secret-key rate of quantum key distribution", Scientific Reports 12 1, 8879 (2022).

[32] Xing-Qiang Zhao, Hai Wan, and Lv-Zhou Li, "How to verify identity in the continuous variable quantum system?", Quantum Information Processing 22 5, 217 (2023).

[33] Yan Pan, Heng Wang, Yun Shao, Yaodi Pi, Ting Ye, Shuai Zhang, Yang Li, Wei Huang, and Bingjie Xu, "Simple and Fast Polarization Tracking Algorithm for Continuous-Variable Quantum Key Distribution System Using Orthogonal Pilot Tone", Journal of Lightwave Technology 41 19, 6169 (2023).

[34] Michele N. Notarnicola and Stefano Olivares, "Beating the standard quantum limit for binary phase-shift-keying discrimination with a realistic hybrid feed-forward receiver", Physical Review A 108 4, 042619 (2023).

[35] Ignatius William Primaatmaja, Cassey Crystania Liang, Gong Zhang, Jing Yan Haw, Chao Wang, and Charles Ci-Wen Lim, "Discrete-variable quantum key distribution with homodyne detection", Quantum 6, 613 (2022).

[36] Margarida Almeida, Daniel Pereira, Margarida Facão, Armando N. Pinto, and Nuno A. Silva, "Reconciliation Efficiency Impact on Discrete Modulated CV-QKD Systems Key Rates", Journal of Lightwave Technology 41 19, 6134 (2023).

[37] Takaya Matsuura, Shinichiro Yamano, Yui Kuramochi, Toshihiko Sasaki, and Masato Koashi, "Refined finite-size analysis of binary-modulation continuous-variable quantum key distribution", Quantum 7, 1095 (2023).

[38] Yan Pan, Heng Wang, Yun Shao, Yaodi Pi, Ting Ye, Yang Li, Wei Huang, and Bingjie Xu, Optical Fiber Communication Conference (OFC) 2023 Th3J.4 (2023) ISBN:978-1-957171-18-0.

[39] Yan Tian, Yu Zhang, Shuaishuai Liu, Pu Wang, Zhenguo Lu, Xuyang Wang, and Yongmin Li, "High-performance long-distance discrete-modulation continuous-variable quantum key distribution", Optics Letters 48 11, 2953 (2023).

[40] François Roumestan, Amirhossein Ghazisaeidi, Haik Mardoyan, Jérémie Renaudier, Eleni Diamanti, and Philippe Grangier, Optical Fiber Communication Conference (OFC) 2022 Tu3I.4 (2022) ISBN:978-1-55752-466-9.

[41] L. S. Aguiar, L. F. M. Borelli, J. A. Roversi, and A. Vidiella-Barranco, "Performance analysis of continuous-variable quantum key distribution using non-Gaussian states", Quantum Information Processing 21 8, 304 (2022).

[42] Ziyang Chen, Xiangyu Wang, Song Yu, Zhengyu Li, and Hong Guo, "Continuous-mode quantum key distribution with digital signal processing", npj Quantum Information 9 1, 28 (2023).

[43] Pu Wang, Yu Zhang, Zhenguo Lu, Xuyang Wang, and Yongmin Li, "Discrete-modulation continuous-variable quantum key distribution with a high key rate", New Journal of Physics 25 2, 023019 (2023).

[44] Yichen Zhang, Yiming Bian, Zhengyu Li, Song Yu, and Hong Guo, "Continuous-variable quantum key distribution system: Past, present, and future", Applied Physics Reviews 11 1, 011318 (2024).

[45] V. Martin, J. P. Brito, L. Ortiz, R. B. Mendez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincon, F. Perez, C. Sanchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. De La Iglesia, C. Abellan, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor, J. Folgueira, and D. R. Lopez, "MadQCI: a heterogeneous and scalable SDN QKD network deployed in production facilities", arXiv:2311.12791, (2023).

[46] Fattah Sakuldee and Behnam Tonekaboni, "Noise decoupling for state transfer in continuous-variable systems", Physical Review A 109 3, 032404 (2024).

[47] François Roumestan, Amirhossein Ghazisaeidi, Jérémie Renaudier, Luis Trigo Vidarte, Eleni Diamanti, and Philippe Grangier, "High-Rate Continuous Variable Quantum Key Distribution Based on Probabilistically Shaped 64 and 256-QAM", arXiv:2111.12356, (2021).

[48] Dingmin Cheng, Yewei Guo, Jiayang Dai, Hao Wu, and Ying Guo, "Neural network method: withstanding noise for continuous-variable quantum key distribution with discrete modulation", Journal of the Optical Society of America B Optical Physics 41 4, 879 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 07:06:51) and SAO/NASA ADS (last updated successfully 2024-05-10 21:06:40). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-05-10 21:06:37: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2021-09-13-540.