Skip to main content
Log in

Injectable Fiber Electronics for Tumor Treatment

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Electrochemical therapy emerged as a low-cost and effective method for tumor ablation. However, it has challenges such as the production of toxic byproducts and the use of rigid electrodes that damage soft tissues. Here, we report a new injectable and tissue-compatible fiber therapeutic electronics for safe and efficient tumor treatment. The design of aligned carbon nanotube (CNT) fiber as electrodes endowed the device with high softness and enabled mini-invasive implantation through injection. Under a mild voltage (1.2 V), the fiber device released hydroxyl ions to alter the local chemical environment of the tissues without additional toxic products/gases, leading to immediate death of tumor cells. The flexible fiber device could form stable interface with tissues and showed good biocompatibility after implantation for 30 days. The in vitro experimental results showed the fiber device could efficiently kill 90.9% of QGY-7703 cancer cells after a single treatment in a few minutes. The tumor-bearing animal models proved that the fiber therapeutic device could effectively inhibit the growth of tumor tissues, indicating it is a safe, effective, controllable and low-cost method for tumor therapy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gatenby RA, Brown JS. Integrating evolutionary dynamics into cancer therapy. Nat Rev Clin Oncol. 2020;17:675.

    Article  Google Scholar 

  2. Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007;26:241.

    Article  CAS  Google Scholar 

  3. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors. Med Oncol. 2001;18:243.

    Article  CAS  Google Scholar 

  4. Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy-revisited. Nat Rev Drug Discov. 2011;10:591.

    Article  CAS  Google Scholar 

  5. Huo M, Wang L, Wang Y, Chen Y, Shi J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano. 2019;13:2643.

    CAS  Google Scholar 

  6. Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev. 2017;115:115.

    Article  CAS  Google Scholar 

  7. Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 2018;12:11740.

    Article  CAS  Google Scholar 

  8. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23:H18.

    Article  CAS  Google Scholar 

  9. Wang SB, Zhang C, Chen ZX, Ye JJ, Peng SY, Rong L, Liu CJ, Zhang XZ. A versatile carbon monoxide nanogenerator for enhanced tumor therapy and anti-inflammation. ACS Nano. 2019;13:5523.

    Article  CAS  Google Scholar 

  10. Chen W, Du J. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci Rep. 2013;3:2162.

    Article  Google Scholar 

  11. Li Z, Chen L, Rubinstein MP. Cancer immunotherapy: are we there yet? Exp Hematol Oncol. 2013;2:1.

    Article  Google Scholar 

  12. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121.

    Article  CAS  Google Scholar 

  13. Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging bio-nano science and cancer nanomedicine. ACS Nano. 2017;11:9594.

    Article  Google Scholar 

  14. Zhong J, Zhong Q, Hu Q, Wu N, Li W, Wang B, Hu B, Zhou J. Stretchable self-powered fiber-based strain sensor. Adv Funct Mater. 2015;25:1798.

    Article  CAS  Google Scholar 

  15. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H. Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater. 2012;22:2487.

    Article  CAS  Google Scholar 

  16. Cai P, Leow WR, Wang X, Wu YL, Chen X. Programmable nano-bio interfaces for functional biointegrated devices. Adv Mater. 2017;29:1605529.

    Article  Google Scholar 

  17. Wang Y, Chen C, Xie H, Gao T, Yao Y, Pastel G, Han X, Li Y, Zhao J, Fu K. 3D-printed all-fiber li-ion battery toward wearable energy storage. Adv Funct Mater. 2017;27:1703140.

    Article  Google Scholar 

  18. Zhao C, Feng H, Zhang L, Li Z, Zou Y, Tan P, Ouyang H, Jiang D, Yu M, Wang C. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv Funct Mater. 2019;29:1808640.

    Article  CAS  Google Scholar 

  19. Li B, Ji P, Peng SY, Pan P, Zheng DW, Li CX, Sun YX, Zhang XZ. Nitric oxide release device for remote-controlled cancer therapy by wireless charging. Adv Mater. 2020;32:2000376.

    Article  CAS  Google Scholar 

  20. Bansal A, Yang F, Xi T, Zhang Y, Ho JS. In vivo wireless photonic photodynamic therapy. Proc Natl Acad Sci. 2018;115:1469.

    Article  CAS  Google Scholar 

  21. Yamagishi K, Kirino I, Takahashi I, Amano H, Takeoka S, Morimoto Y, Fujie T. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat Biomed Eng. 2019;3:27.

    Article  CAS  Google Scholar 

  22. Chew SA, Danti S. Biomaterial-based implantable devices for cancer therapy. Adv Healthc Mater. 2017;6:1600766.

    Article  Google Scholar 

  23. Wang X, Lv F, Li T, Han Y, Yi Z, Liu M, Chang J, Wu C. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano. 2017;11:11337.

    Article  CAS  Google Scholar 

  24. Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv Mater. 2018;30:1706665.

    Article  Google Scholar 

  25. Zhang L, Wang Z, Zhang Y, Cao F, Dong K, Ren J, Qu X. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano. 2018;12:10201.

    Article  CAS  Google Scholar 

  26. Nilsson E, Euler H, Berendson J, Thörne A, Wersäll P, Näslund I, Lagerstedt AS, Narfström K, Olsson JM. Electrochemical treatment of tumours. Bioelectrochemistry. 2000;51:1.

    Article  CAS  Google Scholar 

  27. Cury FL, Bhindi B, Rocha J, Scarlata E, Jurdi KE, Ladouceur M, Beauregard S, Vijh AK, Taguchi Y, Chevalier S. Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry. 2015;104:1.

    Article  CAS  Google Scholar 

  28. Gu T, Wang Y, Lu Y, Cheng L, Feng L, Zhang H, Li X, Han G, Liu Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv Mater. 2019;31:1806803.

    Article  Google Scholar 

  29. Wiggins-Camacho JD, Stevenson KJ. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. J Phys Chem C. 2011;115:20002.

    Article  CAS  Google Scholar 

  30. Feiner R, Dvir T. Tissue-electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater. 2017;3:1.

    Google Scholar 

  31. Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed. 2019;58:13643.

    Article  CAS  Google Scholar 

  32. Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020;4:159.

    Article  CAS  Google Scholar 

  33. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99.

    Article  CAS  Google Scholar 

  34. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MOST (2016YFA0203302), NSFC (21634003, 22075050), STCSM (20JC1414902), SHMEC (2017-01-07-00-07-E00062), the National Postdoctoral Program for Innovative Talents (BX2021245) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Sun, Jiaxue Wu or Huisheng Peng.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, C., Qiu, Y. et al. Injectable Fiber Electronics for Tumor Treatment. Adv. Fiber Mater. 4, 246–255 (2022). https://doi.org/10.1007/s42765-021-00099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00099-3

Keywords

Navigation