Skip to main content
Log in

Theoretical Perspectives on Natural and Artificial Micro-swimmers

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The observations of microorganisms revealed how they swim. As inspired by them, studies on artificial micro-robots with various actuation mechanisms have been thriving. To elucidate the essential concepts in understanding the dynamic behaviors of natural and artificial micro-swimmers—so as to control the latter in future applications, in this paper, we summarize the historical achievements and describe our theoretical perspectives. We first introduce the studies on microorganisms and their propulsion mechanisms. After reviewing the basic principles and the development of the understanding of them, we take the flagellated micro-swimmers as an example to elaborate on the theories of their locomotion. We review the progress in actuation strategies of artificial flagellated micro-swimmers and then propose two possible strategies to realize the turning of a flagellated micro-swimmer—the key step toward steerability through remote fields. Finally, we describe the inadequacies of the investigations on this topic and our perspectives on future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feynman RP. There’s plenty of room at the bottom [data storage]. J Microelectromech Syst. 1992;1(1):60–6.

  2. Esteban-Fernández de Ávila B, et al. Micromotors go in vivo: from test tubes to live animals. Adv Funct Mater. 2018;28(25):1705640.

  3. Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron. 2019;139:111334.

    Article  Google Scholar 

  4. Fischer P, Nelson BJ, Yang G-Z. New materials for next-generation robots. Sci Robot. 2018;3(18):eaau0448.

  5. Patra D, et al. Intelligent, self-powered, drug delivery systems. Nanoscale. 2013;5(4):1273–83.

    Article  Google Scholar 

  6. Ma X, Hahn K, Sanchez S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J Am Chem Soc. 2015;137(15):4976–9.

    Article  Google Scholar 

  7. Medina-Sánchez M, et al. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2016;16(1):555–61.

    Article  Google Scholar 

  8. Walker D, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):e1500501.

    Article  Google Scholar 

  9. Miyashita S, et al. Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: 2016 IEEE international conference on robotics and automation (ICRA). 2016. IEEE.

  10. Soler L, et al. Self-propelled micromotors for cleaning polluted water. ACS Nano. 2013;7(11):9611–20.

    Article  Google Scholar 

  11. Soler L, Sánchez S. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale. 2014;6(13):7175–82.

    Article  Google Scholar 

  12. Vilela D, et al. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16(4):2860–6.

    Article  Google Scholar 

  13. Mallouk TE, Sen A. Nanotechnology-Powering Nanorobots-Catalytic engines enable tiny swimmers to harness fuel from their environment and overcome the weird physics of the microscopic world. Sci Am. 2009;300(5):72–77.

  14. Lighthill J. Flagellar hydrodynamics. SIAM Rev. 1976;18(2):161–230.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lighthill J. Helical distributions of Stokeslets. J Eng Math. 1996;30(1–2):35–78.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lauga E, Powers TR. The hydrodynamics of swimming microorganisms. Rep Prog Phys. 2009;72(9):096601.

    Article  MathSciNet  Google Scholar 

  17. Pak OS, et al. Theoretical models of low-Reynolds-number locomotion. In: Fluid–structure interactions in low-Reynolds-number flows. Royal Society of Chemistry; 2015. p. 100–67.

  18. Lauga E. Bacterial hydrodynamics. Annu Rev Fluid Mech. 2016;48:105–30.

    Article  MathSciNet  MATH  Google Scholar 

  19. Elgeti J, Winkler RG, Gompper G. Physics of microswimmers-single particle motion and collective behavior: a review. Rep Prog Phys. 2015;78(5):056601.

    Article  MathSciNet  Google Scholar 

  20. Bechinger C, et al. Active particles in complex and crowded environments. Rev Mod Phys. 2016;88(4):045006.

    Article  MathSciNet  Google Scholar 

  21. Zhang L, et al. Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett. 2009;94(6):064107.

    Article  Google Scholar 

  22. Sánchez S, Soler L, Katuri J. Chemically powered micro-and nanomotors. Angew Chem Int Ed. 2015;54(5):1414–44.

    Article  Google Scholar 

  23. Rao KJ, et al. A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small. 2015;11(24):2836–46.

    Article  Google Scholar 

  24. Mohanty S, Khalil IS, Misra S. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proc R Soc A. 2020;476(2243):20200621.

    Article  Google Scholar 

  25. Sitti M, et al. Biomedical applications of untethered mobile milli/microrobots. Proc IEEE. 2015;103(2):205–24.

    Article  Google Scholar 

  26. Zhou H, et al. Magnetically driven micro and nanorobots. Chem Rev. 2021;121(8):4999–5041.

    Article  Google Scholar 

  27. Eshaghi M, Ghasemi M, Khorshidi K. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech Lett. 2021;44:101268. https://doi.org/10.1016/j.eml.2021.101268.

  28. Wang L, et al. Engineering magnetic micro/nanorobots for versatile biomedical applications. Adv Intell Syst. 2021;3(7):2000267. https://doi.org/10.1002/aisy.202000267.

  29. Cho SK. Mini and micro propulsion for medical swimmers. Micromachines. 2014;5(1):97–113.

    Article  Google Scholar 

  30. Chen XZ, et al. Small-scale machines driven by external power sources. Adv Mater. 2018;30(15):1705061.

    Article  Google Scholar 

  31. Baker R, Brooks AM, Sen A. Designing Proteus: engineering form and function for microrobotics. In: Robotic systems and autonomous platforms. Elsevier; 2019. p. 85–108.

  32. Soto F, et al. Medical micro/nanorobots in precision medicine. Adv Sci. 2020;7(21):2002203.

    Article  Google Scholar 

  33. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ. How should microrobots swim? Int J Robot Res. 2009;28(11–12):1434–47.

  34. Dobell C (Ed.). A Collection of Writings by the Father of Protozoology and Bacteriology, Antony Van Leeuwenhoek and His “Little Animals”. Dover Publications; 1960.

  35. Berg H. Motile behavior of bacteria. Phys Today. 2000.

  36. Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem. 2003;72.

  37. Berg H. E. coli in motion. New York: Springer; 2004.

    Book  Google Scholar 

  38. Turner L, Ryu WS, Berg HC. Real-time imaging of fluorescent flagellar filaments. J Bacteriol. 2000;182(10):2793–801.

    Article  Google Scholar 

  39. Lowe G, Meister M, Berg HC. Rapid rotation of flagellar bundles in swimming bacteria. Nature. 1987;325(6105):637–40.

    Article  Google Scholar 

  40. Bray D. Cell movements: from molecules to motility. ISBN 9780815332824. Published November 23, 2000 by Garland Science.

  41. Koyasu S, Shirakihara Y. Caulobacter crescentus flagellar filament has a right-handed helical form. J Mol Biol. 1984;173(1):125–30.

    Article  Google Scholar 

  42. Armitage JP, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroide and Sinorhizobium meliloti-variations on a theme? Microbiology. 1997;143(12):3671–82.

    Article  Google Scholar 

  43. Krieg NR, Manual H. Systematic bacteriology. Baltimore: Williams; 1984.

    Google Scholar 

  44. Buller AHR. Is chemotaxis a factor in the fertilisation of the eggs of animals? Q J Microscop Sci. 1903;46:145–76.

    Google Scholar 

  45. Rothschild L, Swann M. The fertilization reaction in the sea-urchin: the probability of a successful sperm-egg collision. J Exp Biol. 1951;28(3):403–16.

    Article  Google Scholar 

  46. Gray J. The movement of sea-urchin spermatozoa. J Exp Biol. 1955;32(4):775–801.

    Article  Google Scholar 

  47. Rikmenspoel R, Van Herpen G, Eijkhout P. Cinematographic observations of the movements of bull sperm cells. Phys Med Biol. 1960;5(2):167.

    Article  Google Scholar 

  48. Rothschild L, Swann M. The fertilization reaction in the sea-urchin egg. The effect of nicotine. J Exp Biol. 1950;27(3):400–6.

    Article  Google Scholar 

  49. Brokaw C. Non-sinusoidal bending waves of sperm flagella. J Exp Biol. 1965;43(1):155–69.

    Article  Google Scholar 

  50. Brokaw CJ. Bending moments in free-swimming flagella. J Exp Biol. 1970;53(2):445–64.

    Article  Google Scholar 

  51. Stearns J, Surette M. Microbiology for dummies. New York: Wiley; 2019.

    Google Scholar 

  52. Childress S. Mechanics of swimming and flying. Cambridge: Cambridge University Press; 1981.

    Book  MATH  Google Scholar 

  53. Brennen C, Winet H. Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech. 1977;9(1):339–98.

    Article  MATH  Google Scholar 

  54. Ellington CP. The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B Biol Sci. 1984;305(1122):17–40.

    Article  Google Scholar 

  55. Vogel E, Vogel D. Kindred strangers: the uneasy relationship between politics and business in America, vol. 155. Princeton: Princeton University Press; 1996.

    Google Scholar 

  56. Alexander DE. Nature’s flyers: birds, insects, and the biomechanics of flight. Baltimore: JHU Press; 2002.

  57. Dudley R. The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press; 2002.

    Google Scholar 

  58. Vogel S. Comparative biomechanics: life’s physical world. Princeton: Princeton University Press; 2003.

  59. Ludwig W. Zur theorie der flimmerbewegung (dynamik, nutzeffekt, energiebilanz). Z Vgl Physiol. 1930;13(3):397–504.

    Article  Google Scholar 

  60. Lighthill J. Mathematical biofluiddynamics. Philadelphia: SIAM; 1975.

    Book  MATH  Google Scholar 

  61. Lighthill SJ. Flagellar hydrodynamics: the von Neumann Lecture, 1975. SIAM Rev. 1976;18(2):161–230.

  62. Purcell EM. Life at low Reynolds number. Am J Phys. 1977;45(1):3–11.

    Article  Google Scholar 

  63. Yates GT. How microorganisms move through water: the hydrodynamics of ciliary and flagellar propulsion reveal how microorganisms overcome the extreme effect of the viscosity of water. Am Sci. 1986;74(4):358–65.

    Google Scholar 

  64. Taylor G, Triantafyllou MS, Tropea C. Animal locomotion. Berlin: Springer; 2010.

    Book  Google Scholar 

  65. Holwill MEJ. Physical aspects of Flagellar movement. Physiol Rev. 1966;46(4):696–785.

    Article  Google Scholar 

  66. Hinch E. Hydrodynamics at low Reynolds numbers: a brief and elementary introduction. In: Disorder and mixing. Springer, Berlin;1988. p. 43–56.

  67. Lighthill SJ. Mathematical biofluiddynamics. Philadelphia: SIAM; 1975.

    Book  MATH  Google Scholar 

  68. Gray J, Hancock G. The propulsion of sea-urchin spermatozoa. J Exp Biol. 1955;32(4):802–14.

    Article  Google Scholar 

  69. Becker LE, Koehler SA, Stone HA. On self-propulsion of micro-machines at low Reynolds number: Purcell’s three-link swimmer. J Fluid Mech. 2003;490:15.

  70. Childress S, Dudley R. Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Re o m e g a. J Fluid Mech. 2004;498:257–88.

    Article  MathSciNet  MATH  Google Scholar 

  71. Alben S, Shelley M. Coherent locomotion as an attracting state for a free flapping body. Proc Natl Acad Sci. 2005;102(32):11163–6.

    Article  Google Scholar 

  72. Vandenberghe N, Childress S, Zhang J. On unidirectional flight of a free flapping wing. Phys Fluids. 2006;18(1):014102.

    Article  MathSciNet  MATH  Google Scholar 

  73. Lu X-Y, Liao Q. Dynamic responses of a two-dimensional flapping foil motion. Phys Fluids. 2006;18(9):098104.

    Article  Google Scholar 

  74. Lauga E. Continuous breakdown of Purcell’s scallop theorem with inertia. Phys Fluids. 2007;19(6):061703.

  75. Friedrich BM, et al. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J Exp Biol. 2010;213(8):1226–34.

    Article  Google Scholar 

  76. Sznitman J, et al. Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys Fluids. 2010;22(12):121901.

    Article  Google Scholar 

  77. Bayly P, et al. Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii. Biophys J. 2011;100(11):2716–25.

    Article  Google Scholar 

  78. Maladen RD, et al. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J R Soc Interface. 2011;8(62):1332–45.

    Article  Google Scholar 

  79. Lauga E, et al. Swimming in circles: motion of bacteria near solid boundaries. Biophys J. 2006;90(2):400–12.

    Article  Google Scholar 

  80. Chattopadhyay S, et al. Swimming efficiency of bacterium Escherichia coli. Proc Natl Acad Sci. 2006;103(37):13712–7.

    Article  Google Scholar 

  81. Chattopadhyay S, Wu X-L. The effect of long-range hydrodynamic interaction on the swimming of a single bacterium. Biophys J. 2009;96(5):2023–8.

    Article  Google Scholar 

  82. Darnton NC, et al. On torque and tumbling in swimming Escherichia coli. J Bacteriol. 2007;189(5):1756–64.

    Article  Google Scholar 

  83. Vogel R, Stark H. Force-extension curves of bacterial flagella. Eur Phys J E. 2010;33(3):259–71.

    Article  Google Scholar 

  84. Vogel R, Stark H. Motor-driven bacterial flagella and buckling instabilities. Eur Phys J E. 2012;35(2):1–15.

    Article  Google Scholar 

  85. Behkam BM. Design methodology for biomimetic propulsion of miniature swimming robots. Sitti;2006.

  86. Li H, Tan J, Zhang M. Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Trans Autom Sci Eng. 2008;6(2):220–7.

    Google Scholar 

  87. NgocSan H, NamSeo G, HyeonKyu Y. Development of a propulsion system for a biomimetic thruster. Chin Sci Bull. 2011;56:432–8.

    Article  Google Scholar 

  88. Rorai C, Zaitsev M, Karabasov S. On the limitations of some popular numerical models of flagellated microswimmers: importance of long-range forces and flagellum waveform. R Soc Open Sci. 2019;6(1):180745.

    Article  MathSciNet  Google Scholar 

  89. Johnson RE. An improved slender-body theory for Stokes flow. J Fluid Mech. 1980;99(2):411–31.

    Article  MathSciNet  MATH  Google Scholar 

  90. Cortez R, Fauci L, Medovikov A. The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys Fluids. 2005;17(3):031504.

    Article  MathSciNet  MATH  Google Scholar 

  91. Hancock G. The self-propulsion of microscopic organisms through liquids. Proc R Soc Lond Ser A Math Phys Sci. 1953;217(1128):96–121.

    MathSciNet  MATH  Google Scholar 

  92. Garcia-Gonzalez J. Numerical analysis of fluid motion at low Reynolds numbers. Manchester: The University of Manchester; 2017.

    Google Scholar 

  93. Tabak AF, Yesilyurt S. Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers. Comput Fluids. 2014;99:190–8.

    Article  MathSciNet  MATH  Google Scholar 

  94. Rodenborn B, et al. Propulsion of microorganisms by a helical flagellum. Proc Natl Acad Sci. 2013;110(5):E338-47.

    Article  Google Scholar 

  95. Ramia M, Tullock D, Phan-Thien N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J. 1993;65(2):755–78.

    Article  Google Scholar 

  96. Shum H, Gaffney E, Smith D. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc R Soc A Math Phys Eng Sci. 2010;466(2118):1725–48.

    MathSciNet  MATH  Google Scholar 

  97. Pimponi D, et al. Hydrodynamics of flagellated microswimmers near free-slip interfaces. J Fluid Mech. 2016;789:514–33.

    Article  MathSciNet  Google Scholar 

  98. Pimponi D, Chinappi M, Gualtieri P. Flagellated microswimmers: hydrodynamics in thin liquid films. European Phys J E. 2018;41(2):1–8.

    Article  Google Scholar 

  99. Curatolo M, Teresi L. Modeling and simulation of fish swimming with active muscles. J Theor Biol. 2016;409:18–26.

    Article  MathSciNet  MATH  Google Scholar 

  100. Taylor GI. Analysis of the swimming of microscopic organisms. Proc R Soc Lond Ser A Math Phys Sci. 1951;209(1099):447–61.

    MathSciNet  MATH  Google Scholar 

  101. Chwang A, Wu TY. A note on the helical movement of micro-organisms. Proc R Soc Lond Ser B Biol Sci. 1971;178(1052):327–46.

    Google Scholar 

  102. Lighthill M. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math. 1952;5(2):109–18.

    Article  MathSciNet  MATH  Google Scholar 

  103. Blake JR. A spherical envelope approach to ciliary propulsion. J Fluid Mech. 1971;46(1):199–208.

    Article  MathSciNet  MATH  Google Scholar 

  104. Blake J. Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull Austral Math Soc. 1971;5(2):255–64.

    Article  MATH  Google Scholar 

  105. Reynolds A. The swimming of minute organisms. J Fluid Mech. 1965;23(2):241–60.

    Article  Google Scholar 

  106. Tuck E. A note on a swimming problem. J Fluid Mech. 1968;31(2):305–8.

    Article  Google Scholar 

  107. Machin K. Wave propagation along flagella. J Exp Biol. 1958;35(4):796–806.

    Article  Google Scholar 

  108. Machin K. The control and synchronization of Flagellar movement. Proc R Soc Lond Ser B Biol Sci. 1963;158(970):88–104.

    Google Scholar 

  109. Wiggins CH, Goldstein RE. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys Rev Lett. 1998;80(17):3879.

    Article  Google Scholar 

  110. Lowe CP. Dynamics of filaments: modelling the dynamics of driven microfilaments. Philos Trans R Soc Lond Ser B Biol Sci. 2003;358(1437):1543–50.

    Article  Google Scholar 

  111. Lagomarsino MC, Capuani F, Lowe CP. A simulation study of the dynamics of a driven filament in an Aristotelian fluid. J Theor Biol. 2003;224(2):215–24.

    Article  MathSciNet  MATH  Google Scholar 

  112. Yu TS, Lauga E, Hosoi A. Experimental investigations of elastic tail propulsion at low Reynolds number. Phys Fluids. 2006;18(9):091701.

    Article  Google Scholar 

  113. Lauga E. Floppy swimming: viscous locomotion of actuated elastica. Phys Rev E. 2007;75(4):041916.

    Article  MathSciNet  Google Scholar 

  114. Kosa G, Shoham M, Zaaroor M. Propulsion method for swimming microrobots. IEEE Trans Robot. 2007;23(1):137–50.

    Article  Google Scholar 

  115. Fu HC, Wolgemuth CW, Powers TR. Beating patterns of filaments in viscoelastic fluids. Phys Rev E. 2008;78(4):041913.

    Article  MathSciNet  Google Scholar 

  116. Riveline D, et al. Elastohydrodynamic study of actin filaments using fluorescence microscopy. Phys Rev E. 1997;56(2):R1330.

    Article  Google Scholar 

  117. Wiggins CH, et al. Trapping and wiggling: elastohydrodynamics of driven microfilaments. Biophys J. 1998;74(2):1043–60.

    Article  Google Scholar 

  118. Dreyfus R, et al. Microscopic artificial swimmers. Nature. 2005;437(7060):862–5.

    Article  Google Scholar 

  119. Liu J, Ruan H. Modeling of an acoustically actuated artificial micro-swimmer. Bioinspir Biomim. 2020;15(3):036002.

    Article  Google Scholar 

  120. Singh TS, Yadava R. Effect of tapering on elastic filament microswimming under planar body actuation. Biomed Phys Eng Express. 2017;4(1):015019.

    Article  Google Scholar 

  121. Manikantan H, Saintillan D. Buckling transition of a semiflexible filament in extensional flow. Phys Rev E. 2015;92(4):041002.

    Article  Google Scholar 

  122. Kantsler V, Goldstein RE. Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows. Phys Rev Lett. 2012;108(3):038103.

    Article  Google Scholar 

  123. Guglielmini L, et al. Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys Fluids. 2012;24(12):123601.

    Article  Google Scholar 

  124. Manikantan H, Saintillan D. Subdiffusive transport of fluctuating elastic filaments in cellular flows. Phys Fluids. 2013;25(7):073603.

    Article  Google Scholar 

  125. Young Y-N, Shelley MJ. Stretch-coil transition and transport of fibers in cellular flows. Phys Rev Lett. 2007;99(5):058303.

    Article  Google Scholar 

  126. Wandersman E, et al. Buckled in translation. Soft Matter. 2010;6(22):5715–9.

    Article  Google Scholar 

  127. Hinch E. The distortion of a flexible inextensible thread in a shearing flow. J Fluid Mech. 1976;74(2):317–33.

    Article  MATH  Google Scholar 

  128. Becker LE, Shelley MJ. Instability of elastic filaments in shear flow yields first-normal-stress differences. Phys Rev Lett. 2001;87(19):198301.

    Article  Google Scholar 

  129. Tornberg A-K, Shelley MJ. Simulating the dynamics and interactions of flexible fibers in Stokes flows. J Comput Phys. 2004;196(1):8–40.

    Article  MathSciNet  MATH  Google Scholar 

  130. Munk T, et al. Dynamics of semiflexible polymers in a flow field. Phys Rev E. 2006;74(4):041911.

    Article  Google Scholar 

  131. Young Y-N. Hydrodynamic interactions between two semiflexible inextensible filaments in Stokes flow. Phys Rev E. 2009;79(4):046317.

    Article  Google Scholar 

  132. Harasim M, et al. Direct observation of the dynamics of semiflexible polymers in shear flow. Phys Rev Lett. 2013;110(10):108302.

    Article  Google Scholar 

  133. Steinhauser D, Köster S, Pfohl T. Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett. 2012;1(5):541–5.

    Article  Google Scholar 

  134. Autrusson N, et al. The shape of an elastic filament in a two-dimensional corner flow. Phys Fluids. 2011;23(6):063602.

    Article  Google Scholar 

  135. Wexler JS, et al. Bending of elastic fibres in viscous flows: the influence of confinement. J Fluid Mech. 2013;720:517–44.

    Article  MathSciNet  MATH  Google Scholar 

  136. Seifert U, Wintz W, Nelson P. Straightening of thermal fluctuations in semiflexible polymers by applied tension. Phys Rev Lett. 1996;77(27):5389.

    Article  Google Scholar 

  137. Llopis I, et al. Sedimentation of pairs of hydrodynamically interacting semiflexible filaments. Phys Rev E. 2007;76(6):061901.

    Article  Google Scholar 

  138. Spagnolie SE, Lauga E. The optimal elastic flagellum. Phys Fluids. 2010;22(3):455.

    Article  MATH  Google Scholar 

  139. Jayaraman G, et al. Autonomous motility of active filaments due to spontaneous flow-symmetry breaking. Phys Rev Lett. 2012;109(15):158302.

    Article  Google Scholar 

  140. Evans AA, et al. Elastocapillary self-folding: buckling, wrinkling, and collapse of floating filaments. Soft Matter. 2013;9(5):1711–20.

    Article  Google Scholar 

  141. Parmar J, et al. Nano and micro architectures for self-propelled motors. Sci Technol Adv Mater. 2015;16(1):014802.

    Article  MathSciNet  Google Scholar 

  142. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115(16):8704–35.

    Article  Google Scholar 

  143. Wang W, et al. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts Chem Res. 2015;48(7):1938–46.

    Article  Google Scholar 

  144. Katuri J, et al. Designing micro-and nanoswimmers for specific applications. Accounts Chem Res. 2017;50(1):2–11.

    Article  Google Scholar 

  145. Maric T, et al. Black-phosphorus-enhanced bubble-propelled autonomous catalytic microjets. Appl Mater Today. 2017;9:289–91.

    Article  Google Scholar 

  146. Paxton WF, et al. Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc. 2004;126(41):13424–31.

    Article  Google Scholar 

  147. Fournier-Bidoz S, et al. Synthetic self-propelled nanorotors. Chem Commun. 2005;4:441–3.

    Article  Google Scholar 

  148. Paxton WF, Sen A, Mallouk TE. Motility of catalytic nanoparticles through self-generated forces. Chem-A Eur J. 2005;11(22):6462–70.

    Article  Google Scholar 

  149. Sundararajan S, et al. Catalytic motors for transport of colloidal cargo. Nano Lett. 2008;8(5):1271–6.

    Article  Google Scholar 

  150. Sundararajan S, et al. Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small. 2010;6(14):1479–82.

    Article  Google Scholar 

  151. Kagan D, et al. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small. 2010;6(23):2741–7.

    Article  Google Scholar 

  152. Xu T, Xu L-P, Zhang X. Ultrasound propulsion of micro-/nanomotors. Appl Mater Today. 2017;9:493–503.

    Article  Google Scholar 

  153. Chen X-Z, et al. Recent developments in magnetically driven micro-and nanorobots. Appl Mater Today. 2017;9:37–48.

    Article  Google Scholar 

  154. Bell DJ, et al. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings 2007 IEEE international conference on robotics and automation. 2007. IEEE.

  155. Hawkeye MM, Brett MJ. Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J Vac Sci Technol A Vac Surf Films. 2007;25(5):1317–35.

    Article  Google Scholar 

  156. Schuerle S, et al. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small. 2012;8(10):1498–502.

    Article  Google Scholar 

  157. Gao W, et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 2014;14(1):305–10.

    Article  Google Scholar 

  158. Fusco S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater. 2014;26(6):952–7.

    Article  Google Scholar 

  159. Fusco S, et al. Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl Mater Interfaces. 2015;7(12):6803–11.

    Article  Google Scholar 

  160. Huang H-W, et al. Soft micromachines with programmable motility and morphology. Nat Commun. 2016;7(1):1–10.

    Article  Google Scholar 

  161. Khalil IS, et al. MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett. 2014;104(22):223701.

    Article  Google Scholar 

  162. Li T, et al. Magnetically propelled fish-like nanoswimmers. Small. 2016;12(44):6098–105.

    Article  Google Scholar 

  163. Wang W, et al. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 2012;6(7):6122–32.

    Article  Google Scholar 

  164. Ahmed S, et al. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano. 2014;8(11):11053–60.

    Article  Google Scholar 

  165. Ahmed S, et al. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir. 2013;29(52):16113–8.

    Article  Google Scholar 

  166. Garcia-Gradilla V, et al. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano. 2013;7(10):9232–40.

    Article  Google Scholar 

  167. Ahmed D, et al. Selectively manipulable acoustic-powered microswimmers. Sci Rep. 2015;5(1):1–8.

    Article  Google Scholar 

  168. Feng J, Yuan J, Cho SK. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab on a Chip. 2015;15(6):1554–62.

    Article  Google Scholar 

  169. Ahmed D, et al. Artificial acousto-magnetic soft microswimmers. Adv Mater Technol. 2017;2(7):1700050.

    Article  Google Scholar 

  170. Ahmed D, et al. Artificial swimmers propelled by acoustically activated flagella. Nano Lett. 2016;16(8):4968–74.

    Article  Google Scholar 

  171. Kaynak M, et al. Acoustic actuation of bioinspired microswimmers. Lab on a Chip. 2017;17(3):395–400.

    Article  Google Scholar 

  172. Jiang H-R, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett. 2010;105(26):268302.

    Article  Google Scholar 

  173. Ni M, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev. 2007;11(3):401–25.

    Article  Google Scholar 

  174. Ibele M, Mallouk TE, Sen A. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem. 2009;121(18):3358–62.

    Article  Google Scholar 

  175. Duan W, et al. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur Phys J E. 2012;35(8):1–8.

    Article  Google Scholar 

  176. Erdem EY, et al. Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst. 2010;19(3):433–42.

    Article  Google Scholar 

  177. Saito K, et al. Miniaturized rotary actuators using shape memory alloy for insect-type MEMS microrobot. Micromachines. 2016;7(4):58.

    Article  Google Scholar 

  178. Saito K, et al. Insect-type MEMS microrobot with mountable bare chip IC of artificial neural networks. Artif Life Robot. 2017;22(1):118–24.

    Article  Google Scholar 

  179. Darhuber AA, et al. Microfluidic actuation by modulation of surface stresses. Appl Phys Lett. 2003;82(4):657–9.

    Article  Google Scholar 

  180. Jiao Z, Huang X, Nguyen N-T. Manipulation of a droplet in a planar channel by periodic thermocapillary actuation. J Micromech Microeng. 2008;18(4):045027.

    Article  Google Scholar 

  181. Hosseinidoust Z, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44.

    Article  Google Scholar 

  182. Schwarz L, Medina-Sánchez M, Schmidt OG. Hybrid biomicromotors. Appl. Phys Rev. 2017;4(3):031301.

    Google Scholar 

  183. Lu AX, et al. Catalytic propulsion and magnetic steering of soft, patchy microcapsules: ability to pick-up and drop-off microscale cargo. ACS Appl Mater Interfaces. 2016;8(24):15676–83.

    Article  Google Scholar 

  184. Singh AK, et al. Multimodal chemo-magnetic control of self-propelling microbots. Nanoscale. 2014;6(3):1398–405.

    Article  Google Scholar 

  185. Jang B, et al. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 2015;15(7):4829–33.

    Article  Google Scholar 

  186. Bertin N, et al. Propulsion of bubble-based acoustic microswimmers. Phys Rev Appl. 2015;4(6):064012.

    Article  Google Scholar 

  187. Peyer KE, Zhang L, Nelson BJ. Localized non-contact manipulation using artificial bacterial flagella. Appl Phys Lett. 2011;99(17):174101.

    Article  Google Scholar 

  188. Peyer KE, Zhang L, Nelson BJ. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale. 2013;5(4):1259–72.

    Article  Google Scholar 

  189. Nama N, et al. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab on a Chip. 2014;14(15):2824–36.

    Article  Google Scholar 

  190. Dijkink R, et al. The ‘acoustic scallop’: a bubble-powered actuator. J Micromech Microeng. 2006;16(8):1653.

  191. Oguz H, Prosperetti A. The natural frequency of oscillation of gas bubbles in tubes. J Acoust Soc Am. 1998;103(6):3301–8.

    Article  Google Scholar 

  192. Ren L, et al. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci Adv. 2019;5(10):eaax3084.

    Article  Google Scholar 

  193. Finnie I, Curl RL. Physics in a toy boat. Am J Phys. 1963;31(4):289–93.

    Article  Google Scholar 

  194. Yang T-Z, et al. Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci. 2014;76:47–55.

    Article  Google Scholar 

  195. Lei Y, Adhikari S, Friswell M. Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci. 2013;66:1–13.

    Article  MathSciNet  MATH  Google Scholar 

  196. Ghayesh MH. Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci. 2019;135:75–85.

    Article  MathSciNet  MATH  Google Scholar 

  197. Ghayesh MH, Farokhi H, Hussain S. Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci. 2016;109:243–55.

    Article  MathSciNet  MATH  Google Scholar 

  198. Brokaw CJ. Bend propagation by a sliding filament model for flagella. J Exp Biol. 1971;55(2):289–304.

    Article  Google Scholar 

  199. Ming T, Ding Y. Transition and formation of the torque pattern of undulatory locomotion in resistive force dominated media. Bioinspir Biomimet. 2018;13(4):046001.

    Article  Google Scholar 

  200. Berg HC, Anderson RA. Bacteria swim by rotating their flagellar filaments. Nature. 1973;245(5425):380–2.

    Article  Google Scholar 

  201. Thomas D, Morgan DG, DeRosier DJ. Structures of bacterial flagellar motors from two FliF–FliG gene fusion mutants. J Bacteriol. 2001;183(21):6404.

    Article  Google Scholar 

  202. Darnton NC, et al. On torque and tumbling in swimming Escherichia coli. J Bacteriol. 2007;189(5):1756.

    Article  Google Scholar 

  203. Jawed MK, et al. Propulsion and instability of a flexible helical rod rotating in a viscous fluid. Phys Rev Lett. 2015;115(16):168101.

    Article  Google Scholar 

  204. Zöttl A, Yeomans JM. Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nat Phys. 2019;15(6):554–8.

    Article  Google Scholar 

  205. Angeles V, et al. Front-back asymmetry controls the impact of viscoelasticity on helical swimming. Phys Rev Fluids. 2021;6(4):043102.

    Article  Google Scholar 

  206. Zhang J, Chinappi M, Biferale L. Base flow decomposition for complex moving objects in linear hydrodynamics: application to helix-shaped flagellated microswimmers. Phys Rev E. 2021;103(2):023109.

    Article  Google Scholar 

  207. Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 2009;9(6):2243–5.

    Article  Google Scholar 

  208. Mahoney AW, et al. Velocity control with gravity compensation for magnetic helical microswimmers. Adv Robot. 2011;25(8):1007–28.

    Article  Google Scholar 

  209. Zeeshan MA, et al. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small. 2014;10(7):1284–8.

    Article  Google Scholar 

  210. Wang X, et al. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater. 2018;28(45):1804107.

    Article  Google Scholar 

  211. Huang H-W, et al. Adaptive locomotion of artificial microswimmers. Sci Adv. 2019;5(1):eaau1532.

    Article  Google Scholar 

  212. Shi X, et al. A strain-engineered Helical structure as a self-adaptive magnetic microswimmer. ChemNanoMat. 2021.

  213. Gauger E, Stark H. Numerical study of a microscopic artificial swimmer. Phys Rev E. 2006;74(2):021907.

    Article  Google Scholar 

  214. Maier AM, et al. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 2016;16(2):906–10.

    Article  Google Scholar 

  215. Dolev A, Kaynak M, Sakar MS. On-board mechanical control systems for untethered microrobots. Adv Intell Syst. 2021;2000233.

  216. Tam D, Hosoi A. Optimal feeding and swimming gaits of biflagellated organisms. Proc Natl Acad Sci. 2011;108(3):1001–6.

    Article  Google Scholar 

  217. Kurtuldu H, et al. Flagellar waveform dynamics of freely swimming algal cells. Phys Rev E. 2013;88(1):013015.

    Article  Google Scholar 

  218. Hu J, et al. Modelling the mechanics and hydrodynamics of swimming E. coli. Soft matter. 2015;11(40):7867–76.

    Article  Google Scholar 

  219. Berti L, et al. Shapes enhancing the propulsion of multiflagellated helical microswimmers. 2021. arXiv preprint arXiv:2103.05637.

  220. Beyrand N, et al. Multi-flagella helical microswimmers for multiscale cargo transport and reversible targeted binding. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2015. IEEE.

  221. Quispe J, Régnier S. Magnetic miniature swimmers with multiple rigid flagella. In: 2020 IEEE international conference on robotics and automation (ICRA). 2020. IEEE.

  222. Wolgemuth CW, Igoshin O, Oster G. The motility of mollicutes. Biophys J. 2003;85(2):828–42.

    Article  Google Scholar 

  223. Williamson DL, Tully JG, Whitcomb RF. The genus Spiroplasma The mycoplasmas. 2012;71–112.

  224. Balaramraja VS, et al. Modelling the undulation patterns of flying snakes. In: 2016 International conference on advances in computing, communications and informatics (ICACCI). 2016. IEEE.

  225. Leoni M, et al. A basic swimmer at low Reynolds number. Soft Matter. 2009;5(2):472–6.

    Article  Google Scholar 

  226. Tam D, Hosoi AE. Optimal stroke patterns for Purcell’s three-link swimmer. Phys Rev Lett. 2007;98(6): 068105.

  227. Passov E, Or Y. Dynamics of Purcell’s three-link microswimmer with a passive elastic tail. Eur Phys J E. 2012;35(8):1–9.

  228. Wiezel O, Or Y. Optimization and small-amplitude analysis of Purcell’s three-link microswimmer model. Proc R Soc A Math Phys Eng Sci. 2016;472(2192):20160425.

  229. Grover J, et al. Geometric motion planning for a three-link swimmer in a three-dimensional low Reynolds-number regime. In: 2018 annual american control conference (ACC). 2018. IEEE.

  230. Alouges F, et al. Can magnetic multilayers propel artificial microswimmers mimicking sperm cells? Soft Robot. 2015;2(3):117–28.

    Article  Google Scholar 

  231. Alouges F, et al. Energy-optimal strokes for multi-link microswimmers: Purcell’s loops and Taylor’s waves reconciled. New J Phys. 2019;21(4):043050.

  232. Moreau C, Giraldi L, Gadêlha H. The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J R Soc Interface. 2018;15(144):20180235.

    Article  Google Scholar 

  233. Dowell E, McHugh K. Equations of motion for an inextensible beam undergoing large deflections. J Appl Mech. 2016;83(5):051007. https://doi.org/10.1115/1.4032795.

  234. Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63(9):789–808.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is supported by the General Research Fund of Hong Kong RGC (Grant No. 15213619). The second author is supported by the postdoctoral scheme of the Hong Kong Polytechnic University (Project ID: P0034926). The studies presented in this work are supported by the NSFC/RGC Joint Research Scheme (RGC: \({N}\_{PolyU519/19}\) and NSFC: 51961160729). The authors are grateful for these financial supports.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written based on the contributions made by all authors (JL, YF, XL and HR): XL and HR devised the project, the main conceptual ideas, and proof outline. JL worked out almost all of the technical details and performed most of the writing. YF and HR were involved in all discussions and performed the writing. HR is the corresponding author.

Corresponding author

Correspondence to Haihui Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of Data and Materials

The authors confirm that the data required to reproduce the findings of this study are available within the article and can be reproduced.

Code Availability

All codes are available upon request.

Consent for Publication

This article has been approved by all the authors for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Fu, Y., Liu, X. et al. Theoretical Perspectives on Natural and Artificial Micro-swimmers. Acta Mech. Solida Sin. 34, 783–809 (2021). https://doi.org/10.1007/s10338-021-00260-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00260-w

Keywords

Navigation