Skip to main content
Log in

The Removal of Ruthenium-Based Complexes N3 Dye from DSSC Wastewater Using Copper Impregnated KOH-Activated Bamboo Charcoal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, Cu-modified activated bamboo charcoal is studied for its performance in removing simulated ruthenium dye wastes. The bamboo belonging to the genus Gigantochloa was used as the starting material to prepare the bamboo charcoal (BC). The BC is activated using KOH, NaOH, and HCl. The activated BCs were then further modified using CuCl2. H2O solution to obtain Cu-impregnated BC. The elemental, functional groups, and surface morphology analyses were carried out to characterize the adsorbents. The Ru complex dye adsorption process was evaluated by batch adsorption experiments, and out of all the adsorbents, the copper-modified KOH-activated bamboo charcoal (10BCKOH) showed the highest adsorption capability. Then, the 10BCKOH characterize with BET, SEM, EXD, XRD, and FTIR before and after the adsorption and optimize the adsorption parameters of pH, dosage, contact time, and initial concentration. The adsorption of the Ru dye is strongly dependent on the pH of the dye solution. The adsorption isotherm has a strong correlation with the Freundlich model, with the value of R2 at 0.927 (KF = 0.0235). The maximum adsorption capacity predicted by the Langmuir model was 64.4 mg.g−1 for 10BCKOH sample. The adsorption process fitted well to the pseudo-second-order kinetic model (R2 = 0.996). The kinetic and isotherm parameters showed that the adsorption of Ru complex onto 10BCKOH was feasible and spontaneous under the reported experimental conditions, and the ion exchange mechanism played a significant role in the process. Our results have shown that 10BCKOH is effective for the removal of Ru dye from the aqueous solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Al-Kahlout, A. M., El-Ghamri, H. S., Dahoudi, N. A., El-Agez, T. M., Taya, S. A., & Abdel-Latif, M. S. (2015). A comparative study: Synthetic dyes as photosensitizers for dye-sensitized solar cells. Turkish Journal of Physics, 39(3), 272–279. https://doi.org/10.3906/fiz-1504-6

    Article  CAS  Google Scholar 

  • Borsagli, F. G. L. M., & Borsagli, A. (2019). Chemically modified chitosan bio-sorbents for the competitive complexation of heavy metals ions: A potential model for the treatment of wastewaters and industrial spills. Journal of Polymers and the Environment, 27(7), 1542–1556.

    Article  CAS  Google Scholar 

  • Borsagli, F. G. L. M., Ciminelli, V. S. T., Ladeira, C. L., Haas, D. J., Lage, A. P., & Mansur, H. S. (2019). Multi-functional eco-friendly 3D scaffolds based on N-acyl thiolated chitosan for potential adsorption of methyl orange and antibacterial activity against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 7(5), 103286.

    Article  Google Scholar 

  • Bouchelta, C., Medjram, M. S., Bertrand, O., & Bellat, J.-P. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis, 82(1), 70–77.

    Article  CAS  Google Scholar 

  • Chen, H. H., Anbarasan, R., Kuo, L. S., Tsai, M. Y., Chen, P. H., & Chiang, K. F. (2010). Synthesis, characterizations and hydrophobicity of micro/nano scaled heptadecafluorononanoic acid decorated copper nanoparticle. Nano-Micro Letters, 2(2), 101–105. https://doi.org/10.5101/nml.v2i2.p101-105

    Article  CAS  Google Scholar 

  • Chen, L., Song, Y., Hu, P., Deming, C. P., Guo, Y., & Chen, S. (2014). Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates. Physical Chemistry Chemical Physics, 16(35), 18736–18742.

    Article  CAS  Google Scholar 

  • Czerczak, S., Gromiec, J. P., Pałaszewska-Tkacz, A., & Świdwińska-Gajewska, A. (2012). Nickel, ruthenium, rhodium, palladium, osmium, and platinum. In Patty’s Toxicology (6 ed., Vol. January). Wiley.

  • Dahri, M. K., Lim, L. B. L., Kooh, M. R. R., & Chan, C. M. (2017). Adsorption of brilliant green from aqueous solution by unmodified and chemically modified Tarap (Artocarpus odoratissimus) peel. International Journal of Environmental Science and Technology, 14(12), 2683–2694. https://doi.org/10.1007/s13762-017-1347-6

    Article  CAS  Google Scholar 

  • Desta, M. B. (2013). Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw ( Eragrostis tef ) Agricultural Waste. Journal of Thermodynamics, 2013, 1–6. https://doi.org/10.1155/2013/375830

    Article  Google Scholar 

  • Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., et al. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53, 112–121. https://doi.org/10.1016/j.jtice.2015.02.025

    Article  CAS  Google Scholar 

  • Farah, Y. R., & Krummel, A. T. (2021). The pH-dependent orientation of N3 dye on a gold substrate is revealed using heterodyne-detected vibrational sum frequency generation spectroscopy. The Journal of Chemical Physics, 154(12), 124702.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.

    Article  CAS  Google Scholar 

  • Ghanizadeh, G. H., Ehrampoush, M., & Ghaneian, M. (2010). Application of iron impregnated activated carbon for removal of arsenic from water. Journal of Environmental Health Science & Engineering, 7(2), 145–156.

    CAS  Google Scholar 

  • Ghosh, S. K., & Bandyopadhyay, A. (2017). Adsorption of methylene blue onto citric acid treated carbonized bamboo leaves powder: Equilibrium, kinetics, thermodynamics analyses. Journal of Molecular Liquids, 248, 413–424. https://doi.org/10.1016/j.molliq.2017.10.086

    Article  CAS  Google Scholar 

  • He, R., Yuan, X., Huang, Z., Wang, H., Jiang, L., Huang, J., et al. (2019). Activated biochar with iron-loading and its application in removing Cr (VI) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123642.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124.

    Article  CAS  Google Scholar 

  • Hong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., & Qin, Q. (2019). Mercury removal mechanism of AC prepared by one-step activation with ZnCl 2. Fuel, 235(June 2018), 326–335. https://doi.org/10.1016/j.fuel.2018.07.103

    Article  CAS  Google Scholar 

  • Hu, H., Sun, L., Jiang, B., Wu, H., Huang, Q., & Chen, X. (2018). Low concentration Re(VII) recovery from acidic solution by Cu-biochar composite prepared from bamboo (Acidosasa longiligula) shoot shell. Minerals Engineering, 124(May), 123–136. https://doi.org/10.1016/j.mineng.2018.05.021

    Article  CAS  Google Scholar 

  • Ip, A. W. M., Barford, J. P., & McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: Effect of salt, surface chemistry, pore size and surface area. Journal of Colloid and Interface Science, 337(1), 32–38. https://doi.org/10.1016/j.jcis.2009.05.015

    Article  CAS  Google Scholar 

  • Isa, S. S. M., Ramli, M. M., Hambali, N. A. M. A., Kasjoo, S. R., Isa, M. M., Nor, N. I. M., et al. (2016). Adsorption properties and potential applications of bamboo charcoal: a review. In MATEC Web of Conferences (Vol. 78, pp. 01097): EDP Sciences

  • Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., et al. (2019). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety, 170(December 2018), 502–512. https://doi.org/10.1016/j.ecoenv.2018.12.020

    Article  CAS  Google Scholar 

  • Khandaker, S., Kuba, T., Kamida, S., & Uchikawa, Y. (2017). Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. Journal of Environmental Chemical Engineering, 5(2), 1456–1464. https://doi.org/10.1016/j.jece.2017.02.014

    Article  CAS  Google Scholar 

  • Kooh, M. R. R., Dahri, M. K., & Lim, L. B. L. (2018). Jackfruit seed as low-cost adsorbent for removal of malachite green: Artificial neural network and random forest approaches. Environmental Earth Sciences, 77(12), 434. https://doi.org/10.1007/s12665-018-7618-9

    Article  CAS  Google Scholar 

  • Kumar, A., & Jena, H. M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651–658.

    Article  Google Scholar 

  • Kumara, N. T. R. N., Kooh, M. R. R., Lim, A., Petra, M. I., Voo, N. Y., Lim, C. M., et al. (2013). DFT/TDDFT and experimental studies of natural pigments extracted from black tea waste for DSSC application. International Journal of Photoenergy, 2013.

  • Kumara, N. T. R. N., Hamdan, N., Petra, M. I., Tennakoon, K. U., & Ekanayake, P. (2014). Equilibrium isotherm studies of adsorption of pigments extracted from Kuduk-kuduk (Melastoma malabathricum L.) pulp onto TiO2 nanoparticles. Journal of Chemistry, 2014. https://doi.org/10.1155/2014/468975.

  • Kumara, N. T. R. N., Petrović, M., Peiris, D., Marie, Y. A., Vijila, C., Petra, M. I., et al. (2015). Efficiency enhancement of Ixora floral dye sensitized solar cell by diminishing the pigments interactions. Solar Energy, 117, 36–45.

    Article  CAS  Google Scholar 

  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.

    Google Scholar 

  • Lalhruaitluanga, H., Jayaram, K., Prasad, M. N. V., & Kumar, K. K. (2010). Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study. Journal of Hazardous Materials, 175(1–3), 311–318. https://doi.org/10.1016/j.jhazmat.2009.10.005

    Article  CAS  Google Scholar 

  • Laskar, N., & Kumar, U. (2018). Adsorption of Crystal Violet from Wastewater by Modified Bambusa Tulda. KSCE Journal of Civil Engineering, 22(8), 2755–2763. https://doi.org/10.1007/s12205-017-0473-5

    Article  Google Scholar 

  • Li, Y., Meas, A., Shan, S., Yang, R., Gai, X., Wang, H., et al. (2018). Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Bioresource Technology, 261, 257–264. https://doi.org/10.1016/j.biortech.2018.03.108

    Article  CAS  Google Scholar 

  • Longo, C., & De Paoli, M. A. (2003). Dye-sensitized solar cells: a successful combination of materials. Journal of the Brazilian Chemical Society, 14(6), 889–901. https://doi.org/10.1590/S0103-50532003000600005

    Article  CAS  Google Scholar 

  • Ma, X., Yang, H., Yu, L., Chen, Y., & Li, Y. (2014). Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials, 7(6), 4431–4441. https://doi.org/10.3390/ma7064431

    Article  Google Scholar 

  • Maciá-Agulló, J. A., Moore, B. C., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon, 42(7), 1367–1370. https://doi.org/10.1016/j.carbon.2004.01.013

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1–3), 117–125. https://doi.org/10.1016/j.desal.2010.10.007

    Article  CAS  Google Scholar 

  • Manasrah, A. D., Almanassra, I. W., Marei, N. N., Al-Mubaiyedh, U. A., Laoui, T., & Atieh, M. A. (2018). Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Advances, 8(4), 1791–1802.

    Article  CAS  Google Scholar 

  • Manoochehri, M., Khorsand, A., & Hashemi, E. (2013). Role of Activated Carbon Modified by H 3 PO 4 and K 2 CO 3 From Natural Adsorbent for Removal of Pb (II) From Aqueous Solutions. Carbon Letters, 13(3), 167–172. https://doi.org/10.5714/cl.2012.13.3.167

    Article  Google Scholar 

  • Mohamad Zaidi, N. A. H., Sallehuddin, F. N., Lim, L. B. L., & Kooh, M. R. R. (2021). Surface modification of Artocarpus odoratissimus leaves using NaOH, SDS and EDTA to enhance adsorption of toxic crystal violet dye. International Journal of Environmental Analytical Chemistry, 1–19,. https://doi.org/10.1080/03067319.2021.1884238

  • Najihah, N., Rosli, B., Ming, L. C., Mahadi, A. H., Wattanasiriwech, S., Lim, R. C., et al. (2018). Ruthenium Dye ( N3 ) Removal from Simulated Wastewater Using Bamboo Charcoal and Activated Bamboo Charcoal. 765, 92–98. https://doi.org/10.4028/www.scientific.net/KEM.765.92.

  • Njoku, V. O., Foo, K. Y., Asif, M., & Hameed, B. H. (2014). Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chemical Engineering Journal, 250, 198–204. https://doi.org/10.1016/j.cej.2014.03.115

    Article  CAS  Google Scholar 

  • Pehlivan, E., Tran, T. H., Ouédraogo, W. K. I., Schmidt, C., Zachmann, D., & Bahadir, M. (2013). Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology, 106, 511–517. https://doi.org/10.1016/j.fuproc.2012.09.021

    Article  CAS  Google Scholar 

  • Romzi, A. A., Kooh, M. R. R., Lim, L. B. L., Priyantha, N., & Chan, C. M. (2021). Environmentally friendly adsorbent derived from rock melon skin for effective removal of toxic brilliant green dye: Linear versus non-linear analyses. International Journal of Environmental Analytical Chemistry, 1–20,. https://doi.org/10.1080/03067319.2021.1931859

  • Salas-Enríquez, B. G., Torres-Huerta, A. M., Conde-Barajas, E., Domínguez-Crespo, M. A., Negrete-Rodríguez, M. L. X., Dorantes-Rosales, H. J., et al. (2019). Stabilized landfill leachate treatment using Guadua amplexifolia bamboo as a source of activated carbon: Kinetics study. Environmental Technology (united Kingdom), 40(6), 768–783. https://doi.org/10.1080/09593330.2017.1407828

    Article  CAS  Google Scholar 

  • Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13,. https://doi.org/10.1186/s11671-018-2760-6

  • Shoukat, S., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous and Mesoporous Materials, 239, 180–189. https://doi.org/10.1016/j.micromeso.2016.10.004

    Article  CAS  Google Scholar 

  • Sivaraj, R., Rajendran, V., & Gunalan, G. S. (2010). Preparation and characterization of activated carbons from parthenium biomass by physical and chemical activation techniques. E-Journal of Chemistry, 7(4), 1314–1319. https://doi.org/10.1155/2010/948015

    Article  CAS  Google Scholar 

  • Somasekhara Reddy, M. C., Sivaramakrishna, L., & Varada Reddy, A. (2012). The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. Journal of Hazardous Materials, 203–204, 118–127. https://doi.org/10.1016/j.jhazmat.2011.11.083

    Article  CAS  Google Scholar 

  • Talodthaisong, C., Wongkhan, K., Sudyoadsuk, T., Saengsuwan, S., & Jitchati, R. (2015). Comparison of the DSSC Efficiency on Synthetic N3 Dyes. Advanced Materials Research, 1131, 165–168. https://doi.org/10.4028/www.scientific.net/amr.1131.165

    Article  Google Scholar 

  • Weber, W., & Morris, J. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Article  Google Scholar 

  • Wołowicz, A., Wawrzkiewicz, M., & Hubicki, Z. (2018). Toxic heavy metal ions and metal-complex dyes removal from aqueous solutions using an ion exchanger and titanium dioxide. Fibres & Textiles in Eastern Europe.

  • Xia, M., Zhao, R., Gong, X., Li, C., Wang, D., & Xia, D. (2017). Denitration and adsorption mechanism of heat-treated bamboo charcoal. Journal of Environmental Chemical Engineering, 5(6), 6194–6200. https://doi.org/10.1016/j.jece.2017.11.051

    Article  CAS  Google Scholar 

  • Xu, H., Shen, B., Yuan, P., Lu, F., Tian, L., & Zhang, X. (2016). The adsorption mechanism of elemental mercury by HNO 3 -modified bamboo char. Fuel Processing Technology, 154, 139–146. https://doi.org/10.1016/j.fuproc.2016.08.025

    Article  CAS  Google Scholar 

  • Yoon, S. H., Lim, S., Song, Y., Ota, Y., Qiao, W., Tanaka, A., et al. (2004). KOH activation of carbon nanofibers. Carbon, 42(8–9), 1723–1729. https://doi.org/10.1016/j.carbon.2004.03.006

    Article  CAS  Google Scholar 

  • Yusoff, A., Kumara, N. T. R. N., Lim, A., Ekanayake, P., & Tennakoon, K. U. (2014). Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. Journal of Biophysics, 2014, 739514. https://doi.org/10.1155/2014/739514

    Article  CAS  Google Scholar 

  • Zhong, Q., Lin, Q., Huang, R., Fu, H., Zhang, X., Luo, H., et al. (2020). Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chemical Engineering Journal, 380, 122608–122608. https://doi.org/10.1016/j.cej.2019.122608

    Article  CAS  Google Scholar 

  • Zhu, J. N., Zhu, X. Q., Cheng, F. F., Li, P., Wang, F., Xiao, Y. W., et al. (2019). Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis. Applied Catalysis b: Environmental, 256(June), 117830. https://doi.org/10.1016/j.apcatb.2019.117830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to chemical sciences and environmental life sciences in Universiti Brunei Darussalam for the assist in terms of the usage of machines for experimental work in this study.

The work described in this paper is supported by Universiti Brunei Darussalam research grants (Grants no: UBD/RSCH/1.9/FICBF/2021/010, UBD/RSCH/1.9/FICBF/2021/008, and UBD/RSCH/URC/NIG/2.0/2019/001).

Author information

Authors and Affiliations

Authors

Contributions

Roshan Thotagamuge, Abdul Hanif Mahadi, Chee Ming Lim, Muhammad Raziq Rahimi Kooh. Muhammad Raziq Rahimi Kooh and Masanizan Abu designed the work and wrote the paper. Masanizan Abu carried out the experimental work under the supervision of Roshan Thotagamuge and Abdul Hanif Mahadi. All the authors reviewed the manuscript.

Corresponding authors

Correspondence to Abdul Hanif Mahadi or Roshan Thotagamuge.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masanizan, A., Lim, C.M., Kooh, M.R.R. et al. The Removal of Ruthenium-Based Complexes N3 Dye from DSSC Wastewater Using Copper Impregnated KOH-Activated Bamboo Charcoal. Water Air Soil Pollut 232, 388 (2021). https://doi.org/10.1007/s11270-021-05333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05333-7

Keywords

Navigation