Skip to main content
Log in

Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Quantum–mechanical transition states can aid in the identification of promising catalysts for methane C–H activation and functionalization. However, only a limited amount of the vast metal–ligand chemical space has been computationally evaluated. To begin to solve this problem, we showcase a workflow that combines automated construction of Pt(II)-ligand combinations and automated transition-state searching with machine learning to maximize the generation of fully optimized transition states.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article and its supplementary material. Mason and Taylor programs used in this work are available at https://github.com/DanielEss-lab/

References

  1. Bergman RG (2007) C–H activation. Nature 446:391–393

    Article  CAS  PubMed  Google Scholar 

  2. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507–514

    Article  CAS  PubMed  Google Scholar 

  3. Shilov AE, Shul’pin GB (1997) Activation of C− H bonds by metal complexes. Chem Rev 97:2879–2932

    Article  CAS  PubMed  Google Scholar 

  4. Stahl SS, Labinger JA, Bercaw JE (1998) Homogeneous oxidation of alkanes by electrophilic late transition metals. Angew Chem Int Ed 37:2180–2192

    Article  Google Scholar 

  5. Sen A (1998) Catalytic functionalization of carbon-hydrogen and carbon-carbon bonds in protic media. Acc Chem Res 31:550–557

    Article  CAS  Google Scholar 

  6. Crabtree (2001) Alkane C–H activation and functionalization with homogeneous transition metal catalysts: A century of progress—A new millennium in prospect. J Chem Soc Dalton Trans 2437–2450

  7. Webb JR, Bolaño T, Gunnoe TB (2011) Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. Chemsuschem 4:37–49

    Article  CAS  PubMed  Google Scholar 

  8. Munz D, Strassner T (2015) Alkane C–H functionalization and oxidation with molecular oxygen. Inorg Chem 54:5043–5052

    Article  CAS  PubMed  Google Scholar 

  9. Ravi M, Ranocchiari M, van Bokhoven JA (2017) The direct catalytic oxidation of methane to methanol—a critical assessment. Angew Chem Int Ed 56:16464–16483

    Article  CAS  Google Scholar 

  10. Niu S, Hall MB (2000) Theoretical studies on reactions of transition-metal complexes. Chem Rev 100:353–406

    Article  CAS  PubMed  Google Scholar 

  11. Vastine BA, Hall MB (2007) Carbon-hydrogen bond activation: two, three, or more mechanisms? J Am Chem Soc 129:12068–12069

    Article  CAS  PubMed  Google Scholar 

  12. Carsch KM, Cundari TR (2012) DFT modeling of a methane-to-methanol catalytic cycle via Group 6 organometallics: the role of metal in determining the mode of C–H activation. Comput Theor Chem 980:133–137

    Article  CAS  Google Scholar 

  13. Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc Chem Res 45:885–898

    Article  CAS  PubMed  Google Scholar 

  14. Gunsalus NJ, Koppaka A, Park SH, Bischof SM, Hashiguchi BG, Periana RA (2017) Homogeneous functionalization of methane. Chem Rev 117:8521–8573

    Article  CAS  PubMed  Google Scholar 

  15. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280:560–564

    Article  CAS  PubMed  Google Scholar 

  16. Konnick MM, Bischof SM, Yousufuddin M, Hashiguchi BG, Ess DH, Periana RA (2014) A mechanistic change results in 100 times faster CH functionalization for ethane versus methane by a homogeneous Pt catalyst. J Am Chem Soc 136:10085–10094

    Article  CAS  PubMed  Google Scholar 

  17. Ahlquist M, Nielsen RJ, Periana RA, Goddard WA III (2009) Product protection, the key to developing high performance methane selective oxidation catalysts. J Am Chem Soc 131:17110–17115

    Article  CAS  PubMed  Google Scholar 

  18. Muller RP, Philipp DM, Goddard WA (2003) Quantum mechanical–rapid prototyping applied to methane activation. Top Catal 23:81–98

    Article  CAS  Google Scholar 

  19. Sun Z, Cundari TR (2020) Cyclic (alkyl)(amino) carbenes in organic and organometallic methane C–H activation: a DFT and MCSCF study. Phys Chem Chem Phys 22:24320–24329

    Article  CAS  PubMed  Google Scholar 

  20. Guan AS, Liang IX, Zhou CX, Cundari TR (2020) Metal and ligand effects on coordinated methane pKa: direct correlation with the methane activation barrier. J Phys Chem A 124:7283–7289

    Article  CAS  PubMed  Google Scholar 

  21. Carter CC, Cundari TR (2020) Computational study of methane C–H activation by main group and mixed main group-transition metal complexes. Molecules 25:2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Najafian A, Cundari TR (2018) C–H Activation of Methane by Nickel-Methoxide Complexes: A Density Functional Theory Study. Organometallics 37:3111–3121

    Article  CAS  Google Scholar 

  23. Sun Z, Hull OA, Cundari TR (2018) Computational study of methane C–H activation by diiminopyridine nitride/nitridyl complexes of 3d transition metals and main-group elements. Inorg Chem 57:6807–6815

    Article  CAS  PubMed  Google Scholar 

  24. Prince BM, Cundari TR (2017) Computational Study of Methane C–H Activation by Earth-Abundant Metal Amide/Aminyl Complexes. Organometallics 36:3987–3994

    Article  CAS  Google Scholar 

  25. Moulder CA, Cundari TR (2017) A DFT survey of the effects of d-electron count and metal identity on the activation and functionalization of C−H bonds for mid to late transition metals. Isr J Chem 57:1023–1031

    Article  CAS  Google Scholar 

  26. Najafian A, Cundari TR (2017) Methane C–H activation via 3d metal methoxide complexes with potentially redox-noninnocent pincer ligands: a density functional theory study. Inorg Chem 56:12282–12290

    Article  CAS  PubMed  Google Scholar 

  27. Parveen R, Cundari TR (2017) Effect of ancillary ligands (A) on oxidative addition of CH4 to rhenium(III) complexes: A= B, Al, CH, SiH, N, and P using MP2, CCSD(T), and MCSCF methods. J Phys Chem A 121:5341–5351

    Article  CAS  PubMed  Google Scholar 

  28. Moulder CA, Cundari TR (2017) 5d Metal(IV) Imide Complexes. The Impact (or Lack Thereof) of d-Orbital Occupation on Methane Activation and Functionalization. Inorg Chem 56:1823–1829

    Article  CAS  PubMed  Google Scholar 

  29. Parveen R, Cundari TR (2017) Effect of ancillary ligands on oxidative addition of CH4 to Ta(III) complexes Ta(OC2H4)3A (A= B, Al, CH, SiH, N, P): a density functional theory study. Organometallics 36:64–73

    Article  CAS  Google Scholar 

  30. Pahls DR, Allen KE, Goldberg KI, Cundari TR (2014) Understanding the effect of ancillary ligands on concerted metalation-deprotonation by (dmPhebox)Ir(OAc)2(H2O) complexes: A DFT study. Organometallics 33:6413–6419

    Article  CAS  Google Scholar 

  31. Prince BM, Cundari TR (2012) C–H bond activation of methane by PtII–N-heterocyclic carbene complexes. The importance of having the ligands in the right place at the right time. Organometallics 31:1042–1048

    Article  CAS  Google Scholar 

  32. Guan Y, Ingman VM, Rooks BJ, Wheeler SE (2018) AARON: an automated reaction optimizer for new catalysts. J Chem Theory Comput 14:5249–5261

    Article  CAS  PubMed  Google Scholar 

  33. Ingman VM, Schaefer AJ, Andreola LR, Wheeler SE (2021) QChASM: Quantum chemistry automation and structure manipulation. WIREs Comput Mol Sci 11:e1510

    Article  CAS  Google Scholar 

  34. Ioannidis EI, Gani TZ, Kulik HJ (2016) molSimplify: a toolkit for automating discovery in inorganic chemistry. J Comput Chem 37:2106–2117

    Article  CAS  PubMed  Google Scholar 

  35. Janet JP, Ramesh S, Duan C, Kulik HJ (2020) Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization. ACS Cent Sci 6:513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friederich P, Dos Passos Gomes G, De Bin R, Aspuru-Guzik A, Balcells D (2020) Machine learning dihydrogen activation in the chemical space surrounding Vaska’s complex. Chem Sci 11:4584–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwon DH, Fuller JT, Kilgore UJ, Sydora OL, Bischof SM, Ess DH (2018) Computational transition-state design provides experimentally verified Cr(P, N) catalysts for control of ethylene trimerization and tetramerization. ACS Catal 8:1138–1142

    Article  CAS  Google Scholar 

  38. Maley SM, Kwon DH, Rollins N, Stanley JC, Sydora OL, Bischof SM, Ess DH (2020) Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization. Chem Sci 11:9665–9674

    Article  PubMed  PubMed Central  Google Scholar 

  39. Foscato M, Jensen VR (2020) Automated in silico design of homogeneous catalysts. ACS Catal 10:2354–2377

    Article  CAS  Google Scholar 

  40. King CR, Rollins N, Holdaway A, Konnick MM, Periana RA, Ess DH (2018) Electrophilic impact of high-oxidation state main-group metal and ligands on alkane C–H activation and functionalization reactions. Organometallics 37:3045–3054

    Article  CAS  Google Scholar 

  41. Denzel A, Kästner J (2018) Gaussian process regression for transition state search. J Chem Theory Comput 14:5777–5786

    Article  CAS  PubMed  Google Scholar 

  42. Denzel A, Haasdonk B, Kästner J (2019) Gaussian process regression for minimum energy path optimization and transition state search. J Phys Chem A 123:9600–9611

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Lei Y-K, Zhang Z, Han X, Li M, Yang L, Yang YI, Gao YQ (2021) Deep reinforcement learning of transition states. Phys Chem Chem Phys 23:6888–6895

    Article  CAS  PubMed  Google Scholar 

  44. Pattanaik L, Ingraham JB, Grambow CA, Green WH (2020) Generating transition states of isomerization reactions with deep learning. Phys Chem Chem Phys 22:23618–23626

    Article  CAS  PubMed  Google Scholar 

  45. Jacobson LD, Bochevarov AD, Watson MA, Hughes TF, Rinaldo D, Ehrlich S, Steinbrecher TB, Vaitheeswaran S, Philipp DM, Halls MD, Friesner RA (2017) Automated Transition State Search and Its Application to Diverse Types of Organic Reactions. J Chem Theory Comput 13:5780–5797

    Article  CAS  PubMed  Google Scholar 

  46. Suleimanov YV, Green WH (2015) Automated discovery of elementary chemical reaction steps using freezing string and berny optimization methods. J Chem Theory Comput 11:4248–4259

    Article  CAS  PubMed  Google Scholar 

  47. Zimmerman P (2013) Reliable transition state searches integrated with the growing string method. J Chem Theory Comput 9:3043–3050

    Article  CAS  PubMed  Google Scholar 

  48. Zimmerman PM (2013) Automated discovery of chemically reasonable elementary reaction steps. J Comput Chem 34:1385–1392

    Article  CAS  PubMed  Google Scholar 

  49. Zimmerman PM (2015) Single-ended transition state finding with the growing string method. J Comput Chem 36:601–611

    Article  CAS  PubMed  Google Scholar 

  50. Bhoorasingh PL, Slakman BL, Seyedzadeh Khanshan F, Cain JY, West RH (2017) Automated transition state theory calculations for high-throughput kinetics. J Phys Chem A 121:6896–6904

    Article  CAS  PubMed  Google Scholar 

  51. Varela JA, Vazquez SA, Martinez-Nunez E (2017) An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis. Chem Sci 8:3843–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dohm S, Bursch M, Hansen A, Grimme S (2020) Semiautomated transition state localization for organometallic complexes with semiempirical quantum chemical methods. J Chem Theory Comput 16:2002–2012

    Article  CAS  PubMed  Google Scholar 

  53. Iron MA, Janes T (2019) Evaluating transition metal barrier heights with the latest density functional theory exchange-correlation functionals: the mobh35 benchmark database. J Phys Chem A 123:3761–3781

    Article  CAS  PubMed  Google Scholar 

  54. Ismail I, Stuttaford-Fowler H, Ochan Ashok C, Robertson C, Habershon S (2019) Automatic proposal of multistep reaction mechanisms using a graph-driven search. J Phys Chem A 123:3407–3417

    Article  CAS  PubMed  Google Scholar 

  55. Simm GN, Vaucher AC, Reiher M (2019) Exploration of reaction pathways and chemical transformation networks. J Phys Chem A 123:385–399

    Article  CAS  PubMed  Google Scholar 

  56. Vaucher AC, Reiher M (2018) Minimum energy paths and transition states by curve optimization. J Chem Theory Comput 14:3091–3099

    Article  CAS  PubMed  Google Scholar 

  57. Heuer MA, Vaucher AC, Haag MP, Reiher M (2018) Integrated reaction path processing from sampled structure sequences. J Chem Theory Comput 14:2052–2062

    Article  CAS  PubMed  Google Scholar 

  58. Simm GN, Reiher M (2017) Context-driven exploration of complex chemical reaction networks. J Chem Theory Comput 13:6108–6119

    Article  CAS  PubMed  Google Scholar 

  59. Bergeler M, Simm GN, Proppe J, Reiher M (2015) Heuristics-guided exploration of reaction mechanisms. J Chem Theory Comput 11:5712–5722

    Article  CAS  PubMed  Google Scholar 

  60. Young TA, Silcock JJ, Sterling AJ, Duarte F (2021) autodE: automated calculation of reaction energy profiles-application to organic and organometallic reactions. Angew Chem Int Ed 60:4266–4274

    Article  CAS  Google Scholar 

  61. Maeda S, Harabuchi Y, Takagi M, Saita K, Suzuki K, Ichino T, Sumiya Y, Sugiyama K, Ono Y (2018) Implementation and performance of the artificial force induced reaction method in the GRRM17 program. J Comput Chem 39:233–251

    Article  CAS  PubMed  Google Scholar 

  62. Sameera WM, Maeda S, Morokuma K (2016) Computational catalysis using the artificial force induced reaction method. Acc Chem Res 49:763–773

    Article  CAS  PubMed  Google Scholar 

  63. Maeda S, Ohno K, Morokuma K (2013) Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys Chem Chem Phys 15:3683–3701

    Article  CAS  PubMed  Google Scholar 

  64. Foscato M, Venkatraman V, Jensen VR (2019) DENOPTIM: software for computational de novo design of organic and inorganic molecules. J Chem Inf Model 59:4077–4082

    Article  CAS  PubMed  Google Scholar 

  65. Sobez JG, Reiher M (2020) Molassembler: molecular graph construction, modification, and conformer generation for inorganic and organic molecules. J Chem Inf Model 60:3884–3900

    Article  CAS  PubMed  Google Scholar 

  66. Guan Y, Wheeler SE (2017) Automated quantum mechanical predictions of enantioselectivity in a rhodium-catalyzed asymmetric hydrogenation. Angew Chem Int Ed 56:9101–9105

    Article  CAS  Google Scholar 

  67. Doney AC, Rooks BJ, Lu TX, Wheeler SE (2016) Design of organocatalysts for asymmetric propargylations through computational screening. ACS Catal 6:7948–7955

    Article  CAS  Google Scholar 

  68. Rooks BJ, Haas MR, Sepúlveda D, Lu T, Wheeler SE (2014) Prospects for the computational design of bipyridineN, N′-dioxide catalysts for asymmetric propargylation reactions. ACS Catal 5:272–280

    Article  Google Scholar 

  69. Hawkins PCD (2017) Conformation generation: the state of the art. J Chem Inf Model 57:1747–1756

    Article  CAS  PubMed  Google Scholar 

  70. Friedrich NO, Meyder A, de Bruyn Kops C, Sommer K, Flachsenberg F, Rarey M, Kirchmair J (2017) High-quality dataset of protein-bound ligand conformations and its application to benchmarking conformer ensemble generators. J Chem Inf Model 57:529–539

    Article  CAS  PubMed  Google Scholar 

  71. Friedrich NO, de Bruyn Kops C, Flachsenberg F, Sommer K, Rarey M, Kirchmair J (2017) Benchmarking commercial conformer ensemble generators. J Chem Inf Model 57:2719–2728

    Article  CAS  PubMed  Google Scholar 

  72. Yang H, Wong MW (2019) Automatic conformational search of transition states for catalytic reactions using genetic algorithm. J Phys Chem A 123:10303–10314

    Article  CAS  PubMed  Google Scholar 

  73. RDKit: Open-Source Cheminformatics Software 2017.03.2, (2017)

  74. O'Boyle NM (2011) Confab 1.0.1

  75. Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 9:184

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47:2462–2474

    Article  CAS  PubMed  Google Scholar 

  77. ConfGenX, Part of the Schrödinger Small-Molecule Drug Discovery Suite 2016–2, (Schrödinger, New York, NY, 2016).

  78. cxcalc, Part of the Discovery Toolkit 15.8.31.0, (ChemAxon, Budapest, Hungary, 2015).

  79. Poli G, Seidel T, Langer T (2018) Conformational sampling of small molecules with iCon: performance assessment in comparison with OMEGA. Front Chem 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  80. Molecular Operating Environment (MOE) 2016.08, (Chemical Computing Group, Montreal, QC, 2017).

  81. Friedrich NO, Flachsenberg F, Meyder A, Sommer K, Kirchmair J, Rarey M (2019) Conformator: a novel method for the generation of conformer ensembles. J Chem Inf Model 59:731–742

    Article  CAS  PubMed  Google Scholar 

  82. Pracht P, Bohle F, Grimme S (2020) Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys 22:7169–7192

    Article  CAS  PubMed  Google Scholar 

  83. Spicher S, Grimme S (2020) Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew Chem Int Ed 59:15665–15673

    Article  CAS  Google Scholar 

  84. Zapata F, Ridder L, Hidding J, Jacob CR, Infante I, Visscher L (2019) QMflows: a tool kit for interoperable parallel workflows in quantum chemistry. J Chem Inf Model 59:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchinson GR (2011) Open bable: an open chemical toolbox. J Cheminformatics 3:33

    Article  Google Scholar 

  86. Nandy A, Duan CR, Janet JP, Gugler S, Kulik HJ (2018) Strategies and software for machine learning accelerated discovery in transition metal chemistry. Ind Eng Chem Res 57:13973–13986

    Article  CAS  Google Scholar 

  87. Duan C, Liu F, Nandy A, Kulik HJ (2021) Putting density functional theory to the test in machine-learning-accelerated materials discovery. J Phys Chem Lett 12:4628–4637

    Article  CAS  PubMed  Google Scholar 

  88. Henle JJ, Zahrt AF, Rose BT, Darrow WT, Wang Y, Denmark SE (2020) Development of a computer-guided workflow for catalyst optimization. descriptor validation, subset selection, and training set analysis. J Am Chem Soc 142:11578–11592

    Article  CAS  PubMed  Google Scholar 

  89. Durand DJ, Fey N (2021) Building a toolbox for the analysis and prediction of ligand and catalyst effects in organometallic catalysis. Acc Chem Res 54:837–848

    Article  CAS  PubMed  Google Scholar 

  90. Kulik HJ (2019) Making machine learning a useful tool in the accelerated discovery of transition metal complexes. WIREs Comput Mol Sci 10:e1439

    Google Scholar 

  91. Gugler S, Janet JP, Kulik HJ (2020) Enumeration of de novo inorganic complexes for chemical discovery and machine learning. Mol Syst Des Eng 5:139–152

    Article  CAS  Google Scholar 

  92. Taylor MG, Yang T, Lin S, Nandy A, Janet JP, Duan C, Kulik HJ (2020) Seeing is believing: experimental spin states from machine learning model structure predictions. J Phys Chem A 124:3286–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Janet JP, Kulik HJ (2017) Predicting electronic structure properties of transition metal complexes with neural networks. Chem Sci 8:5137–5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Janet JP, Kulik HJ (2017) Resolving transition metal chemical space: feature selection for machine learning and structure-property relationships. J Phys Chem A 121:8939–8954

    Article  CAS  PubMed  Google Scholar 

  95. Zhao H, Ezeh CI, Ren W, Li W, Pang CH, Zheng C, Gao X, Wu T (2019) Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials. Appl Energy 254:113651

    Article  CAS  Google Scholar 

  96. Minenkov Y, Sharapa DI, Cavallo L (2018) Application of semiempirical methods to transition metal complexes: fast results but hard-to-predict accuracy. J Chem Theory Comput 14:3428–3439

    Article  CAS  PubMed  Google Scholar 

  97. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. B.01 Wallingford, CT

  98. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  99. Steinmetz M, Grimme S (2013) Benchmark study of the performance of density functional theory for bond activations with (Ni, Pd)-based transition-metal catalysts. ChemistryOpen 2:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duan C, Janet JP, Liu F, Nandy A, Kulik HJ (2019) Learning from failure: predicting electronic structure calculation outcomes with machine learning models. J Chem Theory Comput 15:2331–2345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brigham Young University and the Office of Research Computing. This work was entirely supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program, under Award # DE-SC0018329 (to D.H.E). D. B. acknowledges the support from the Research Council of Norway through its Centers of Excellence Scheme (Project Number 262695) and the Norwegian Supercomputing Program (NOTUR; Project Number NN4654K). B. B. S. is supported by a scholarship from the Otsuka Toshimi Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Balcells or Daniel H. Ess.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 3351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Nielson, T., Zalit, E. et al. Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Top Catal 65, 312–324 (2022). https://doi.org/10.1007/s11244-021-01506-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01506-0

Keywords

Navigation