Skip to main content
Log in

Review and prospects of bioleaching in the Chinese mining industry

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

As the world’s second largest economy experiencing rapid economic growth, China has a huge demand for metals and energy. In recent years, China ranks first, among all the countries in the world, in the production and consumption of several metals such as copper, gold, and rare earth elements. Bioleaching, which is an approach for mining low grade and refractory ores, has been applied in industrial production, and bioleaching has made great contributions to the development of the Chinese mining industry. The exploration and application of bioleaching in China are reviewed in this study. Production and consumption trends of several metals in China over the past decade are reviewed. Technological processes at key bioleaching operations in China, such as at the Zijinshan Copper Mine and Mianhuakeng Uranium Mine, are presented. Also, the current challenges faced by bioleaching operations in China are introduced. Moreover, prospects such as efficiency improvement and environmental protection are proposed based on the current situation in the Chinese bioleaching industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.L. Brierley and J.A. Brierley, Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries, Appl. Microbiol. Biotechnol., 97(2013), No. 17, p. 7543.

    Article  CAS  Google Scholar 

  2. A. Schaffartzik, A. Mayer, N. Eisenmenger, and F. Krausmann, Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society’s skeleton, Ecol. Econ., 122(2016), p. 101.

    Article  Google Scholar 

  3. B.Q. Lin and B. Xu, How does fossil energy abundance affect China’s economic growth and CO2 emissions?, Sci. Total Environ., 719(2020), art. No. 137503.

  4. A. Hermawan, Y. Asakura, and S. Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1560.

    Article  CAS  Google Scholar 

  5. D. Cholico-Gonzalez, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. Garcia, and C.A.L. Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603.

    Article  CAS  Google Scholar 

  6. H. Mikulčić, J. Baleta, and J.J. Klemeš, Sustainability through combined development of energy, water and environment systems, J. Cleaner Prod., 251(2020), art. No. 119727.

  7. P. Li, J.J. Wang, Y. Wang, J.J. Liang, B.H. He, D.Q. Pan, Q.H. Fan, and X.K. Wang, Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction, Chem. Eng. J., 365(2019), p. 231.

    Article  CAS  Google Scholar 

  8. W. Luo, G. Xiao, F. Tian, J.J. Richardson, Y.P. Wang, J.F. Zhou, J.L. Guo, X.P. Liao, and B. Shi, Engineering robust metal-phenolic network membranes for uranium extraction from seawater, Energy Environ. Sci., 12(2019), No. 2, p. 607.

    Article  CAS  Google Scholar 

  9. S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China: Review and prospect, Minerals, 8(2018), No. 2, art. No. 32.

  10. Y.T. Wang, L. Chen, Y.S. Yan, J. Chen, J.D. Dai, and X.H. Dai, Separation of adjacent heavy rare earth Lutetium(III) and Ytterbium(III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane, J. Membr. Sci., 610(2020), art. No. 118263.

  11. P. Long, G.S. Wang, C. Zhang, Y.J. Yang, X.J. Cao, and Z.B. Shi, Kinetics model for leaching of ion-adsorption type rare earth ores, J. Rare Earths, 38(2020), No. 12, p. 1354.

    Article  CAS  Google Scholar 

  12. N. Dushyantha, N. Batapola, I.M.S.K. Ilankoon, S. Rohitha, R. Premasiri, B. Abeysinghe, N. Ratnayake, and K. Dissanayake, The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geol. Rev., 122(2020), art. No. 103521.

  13. X.C. Sun, K. Yuan, and Y.W. Zhang, Advances and prospects of rare earth metal-organic frameworks in catalytic applications, J. Rare Earths, 38(2020), No. 8, p. 801.

    Article  CAS  Google Scholar 

  14. W.J. Weng, A. Biesiekierski, J.X. Lin, Y.C. Li, and C.E. Wen, Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti-24Nb-38Zr-2Mo alloy for medical applications, Materialia, 12(2020), art. No. 100772.

  15. E. Alonso, A.M. Sherman, T.J. Wallington, M.P. Everson, F.R. Field, R. Roth, and R.E. Kirchain, Evaluating rare earth element availability: A case with revolutionary demand from clean technologies, Environ. Sci. Technol., 46(2012), No. 6, p. 3406.

    Article  CAS  Google Scholar 

  16. S. Ghosh, S. Mohanty, A. Akcil, L.B. Sukla, and A.P. Das, A greener approach for resource recycling: Manganese bioleaching, Chemosphere, 154(2016), p. 628.

    Article  CAS  Google Scholar 

  17. E. Govender, A. Kotsiopoulos, C.G. Bryan, and S.T.L. Harrison, Modelling microbial transport in simulated low-grade heap bioleaching systems: The biomass transport model, Hydrometallurgy, 150(2014), p. 299.

    Article  CAS  Google Scholar 

  18. X. Fang, Y. Shen, J. Zhao, X.M. Bao, and Y.B. Qu, Status and prospect of lignocellulosic bioethanol production in China, Bioresour. Technol., 101(2010), No. 13, p. 4814.

    Article  CAS  Google Scholar 

  19. X.P. He and D.G. Mou, Impacts of mineral resources: Evidence from county economies in China, Energy Policy, 136(2020), art. No. 111088.

  20. J. Lederer, A. Gassner, F. Kleemann, and J. Fellner, Potentials for a circular economy of mineral construction materials and demolition waste in urban areas: A case study from Vienna, Resour. Conserv. Recycl., 161(2020), art. No. 104942.

  21. V.E. Glotov, J. Chlachula, L.P. Glotova, and E. Little, Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East, Eng. Geol., 245(2018), p. 236.

    Article  Google Scholar 

  22. China Geology Editorial Office, The report of China mineral resource reserves, 2018, China Geol., 2(2019), No. 2, p. 251.

    Article  Google Scholar 

  23. F. Acevedo, J.C. Gentina, and S. Bustos, Bioleaching of minerals—A valid alternative for developing countries, J. Biotechnol., 31(1993), No. 1, p. 115.

    Article  CAS  Google Scholar 

  24. A.X. Wu, S.H. Yin, W.Q. Qin, J.S. Liu, and G.Z. Qiu, The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching, Hydrometallurgy, 95(2009), No. 1–2, p. 76.

    Article  CAS  Google Scholar 

  25. H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601.

    Article  Google Scholar 

  26. S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590.

  27. J. Kiventerä, P. Perumal, J. Yliniemi, and M. Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1009.

    Article  CAS  Google Scholar 

  28. C.C. Small, S. Cho, Z. Hashisho, and A.C. Ulrich, Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates, J. Pet. Sci. Eng., 127(2015), p. 490.

    Article  CAS  Google Scholar 

  29. T. Dutta, K.H. Kim, M. Uchimiya, E.E. Kwon, B.H. Jeon, A. Deep, and S.T. Yun, Global demand for rare earth resources and strategies for green mining, Environ. Res., 150(2016), p. 182.

    Article  CAS  Google Scholar 

  30. T.V. Ojumu, J. Petersen, G.E. Searby, and G.S. Hansford, A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching, Hydrometallurgy, 83(2006), No. 1–4, p. 21.

    Article  CAS  Google Scholar 

  31. J.A. Brierley, A perspective on developments in biohydrometallurgy, Hydrometallurgy, 94(2008), No. 1–4, p. 2.

    Article  CAS  Google Scholar 

  32. S.Z. Li, H. Zhong, Y.H. Hu, J.C. Zhao, Z.G. He, and G.H. Gu, Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles, Bioresour. Technol., 153(2014), p. 300.

    Article  CAS  Google Scholar 

  33. S. Rana, P. Mishra, Z. Ab Wahid, S. Thakur, D. Pant, and L. Singh, Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview, J. Environ. Sci., 89(2020), p. 47.

    Article  Google Scholar 

  34. A.H. Kaksonen, A.M. Lakaniemi, and O.H. Tuovinen, Acid and ferric sulfate bioleaching of uranium ores: A review #, J. Cleaner Prod., 264(2020), art. No. 121586.

  35. S. Dev, A. Sachan, F. Dehghani, T. Ghosh, B.R. Briggs, and S. Aggarwal, Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review, Chem. Eng. J., 397(2020), art. No. 124596.

  36. J.A. Brierley and C.L. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy, 59(2001), No. 2–3, p. 233.

    Article  CAS  Google Scholar 

  37. T. Huang and D.W. Li, Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—A presentation, Biotechnol. Rep., 4(2014), p. 107.

    Article  Google Scholar 

  38. Q. Ma, Z.G. Feng, P. Liu, X.K. Lin, Z.G. Li, and M.S. Chen, Uranium speciation and in situ leaching of a sandstone-type deposit from China, J. Radioanal. Nucl. Chem., 311(2017), No. 3, p. 2129.

    Article  CAS  Google Scholar 

  39. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides—A review, Hydrometallurgy, 84(2006), No. 1–2, p. 81.

    Article  CAS  Google Scholar 

  40. S.R. Yang, J.Y. Xie, G.Z. Qiu, and Y.H. Hu, Research and application of bioleaching and biooxidation technologies in China, Miner. Eng., 15(2002), No. 5, p. 361.

    Article  CAS  Google Scholar 

  41. W. Chen, S.H. Yin, A.X. Wu, L.M. Wang, and X. Chen, Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater, Bioresour. Technol., 297(2020), art. No. 122453.

  42. N. Haque and T. Norgate, The greenhouse gas footprint of in situ leaching of uranium, gold and copper in Australia, J. Cleaner Prod., 84(2014), p. 382.

    Article  CAS  Google Scholar 

  43. N. Pradhan, K.C. Nathsarma, K. Srinivasa Rao, L.B. Sukla, and B.K. Mishra, Heap bioleaching of chalcopyrite: A review, Miner. Eng., 21(2008), No. 5, p. 355.

    Article  CAS  Google Scholar 

  44. W. Chen, S.H. Yin, Y. Qi, X. Chen, and L.M. Wang, Effect of additives on bioleaching of copper sulfide ores, J. Cent. South Univ. Sci. Technol., 50(2019), No. 7, p. 1507.

    Google Scholar 

  45. S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605.

  46. S.H. Yin, W. Chen, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulfide ore bioleaching, Int. J. Miner. Metall. Mater., (2020). DOI: https://doi.org/10.1007/s12613-020-2125-x

  47. H.B. Zhao, J. Wang, M.H. Hu, W.Q. Qin, Y.S. Zhang, and G.Z. Qiu, Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans, Bioresour. Technol., 149(2013), p. 71.

    Article  CAS  Google Scholar 

  48. X.Y. Liu, B.W. Chen, J.H. Chen, M.J. Zhang, J.K. Wen, D.Z. Wang, and R.M. Ruan, Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant, Miner. Eng., 94(2016), p. 76.

    Article  CAS  Google Scholar 

  49. Y.B. Dong, H. Li, H. Lin, and Y. Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 369.

    Article  CAS  Google Scholar 

  50. Y. Liu, H.Q. Yin, W.M. Zeng, Y.L. Liang, Y. Liu, N. Baba, G.Z. Qiu, L. Shen, X. Fu, and X.D. Liu, The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching, Bioresour. Technol., 102(2011), No. 17, p. 8092.

    Article  CAS  Google Scholar 

  51. S.X. Xu, S.M. Zhang, H.Q. Wang, H.L. Xie, and K. Wu, Adsorption of rare earth ions by phanerochaete chrysosporium 210, J. Chin. Soc. Rare Earths, 28(2010), No. 2, p. 225.

    CAS  Google Scholar 

  52. A.X. Wu, S.H. Yin, H.J. Wang, W.Q. Qin, and G.Z. Qiu, Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation, Bioresour. Technol., 100(2009), No. 6, p. 1931.

    Article  CAS  Google Scholar 

  53. S.H. Yin, W. Chen, J.M. Liu, and Q. Song, Agglomeration experiment of secondary copper sulfide ore, Chin. J. Eng., 41(2019), No. 9, p. 1127.

    Google Scholar 

  54. W. Du, The impact of in-situ leaching on natural environment of ion-type rare earth mine, Jiangxi Nonferrous Metal., 2001, No. 1, p. 41.

  55. M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5183.

    Google Scholar 

  56. D. McBride, I.M.S.K. Ilankoon, S.J. Neethling, J.E. Gebhardt, and M. Cross, Preferential flow behaviour in unsaturated packed beds and heaps: Incorporating into a CFD model, Hydrometallurgy, 171(2017), p. 402.

    Article  CAS  Google Scholar 

  57. B.H. Yang, A.X. Wu, H.C. Jiang, and X.S. Chen, Evolvement of permeability of ore granular media during heap leaching based on image analysis, Trans. Nonferrous Met. Soc. China, 18(2008), No. 2, p. 426.

    Article  CAS  Google Scholar 

  58. S.H. Yin, L.M. Wang, X. Chen, and A.X. Wu, Effect of ore size and heap porosity on capillary process inside leaching heap, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 835.

    Article  CAS  Google Scholar 

  59. W.Q. Qin, C.R. Yang, S.S. Lai, J. Wang, K. Liu, and B. Zhang, Bioleaching of chalcopyrite by moderately thermophilic microorganisms, Bioresour. Technol., 129(2013), p. 200.

    Article  CAS  Google Scholar 

  60. S. Nagpal, D. Dahlstrom, and T. Oolman, Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate, Biotechnol. Bioeng., 41(1993), No. 4, p. 459.

    Article  CAS  Google Scholar 

  61. J.A. Muñoz, D.B. Dreisinger, W.C. Cooper, and S.K. Young, Silver-catalyzed bioleaching of low-grade copper ores.: Part I: Shake flasks tests, Hydrometallurgy, 88(2007), No. 1–4, p. 3.

    Article  CAS  Google Scholar 

  62. A.X. Wu, S.H. Yin, B.H. Yang, J. Wang, and G.Z. Qiu, Study on preferential flow in dump leaching of low-grade ores, Hydrometallurgy, 87(2007), No. 3–4, p. 124.

    Article  CAS  Google Scholar 

  63. S.H. Yin, A.X. Wu, K.J. Hu, Y.M. Wang, and Z.L. Xue, Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions, Hydrometallurgy, 133(2013), p. 1.

    Article  CAS  Google Scholar 

  64. Y.B. Dong, H. Lin, X.F. Xu, Y. Zhang, Y.J. Gao, and S.S. Zhou, Comparative study on the bioleaching, biosorption and passivation of copper sulfide minerals, Int. Biodeterior. Biodegrad., 84(2013), p. 29.

    Article  CAS  Google Scholar 

  65. J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin, and G.Z. Qiu, Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis, Miner. Eng., 98(2016), p. 264.

    Article  CAS  Google Scholar 

  66. S. Panda, A. Akcil, N. Pradhan, and H. Deveci, Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology, Bioresour. Technol., 196(2015), p. 694.

    Article  CAS  Google Scholar 

  67. M.X. Diao, E. Taran, S. Mahler, and A.V. Nguyen, A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions, Adv. Colloid Interface Sci., 212(2014), p. 45.

    Article  CAS  Google Scholar 

  68. N.J. Boxall, S.M. Rea, J. Li, C. Morris, and A.H. Kaksonen, Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community, Hydrometallurgy, 168(2017), p. 32.

    Article  CAS  Google Scholar 

  69. S. Deng, G.H. Gu, Z.T. Wu, and X.Y. Xu, Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms, Chemosphere, 185(2017), p. 403.

    Article  CAS  Google Scholar 

  70. China Nonferrous Metals Industry Association, Production of metals, China Nonferrous Metals Industry Association, Beijing [2019-12-18] https://www.chinania.org.cn/html/hangyetongji/chanyeshuju/

  71. World Nuclear Association, World Uranium Mining Production, World Nuclear Association, London [2020-07-04]. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx

  72. World Nuclear Association, Nuclear Power in China, World Nuclear Association, London [2020-07-04]. https://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx

  73. R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, and C. Han, Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans, Miner. Eng., 95(2016), p. 74.

    Article  CAS  Google Scholar 

  74. Ministry of Industry and Information Technology of the People’s Republic of China and Ministry of Natural Resources of the People’s Republic of China, Notice on Issuing the First Batch of Total Amount Control Plan for Rare Earth Mining, Smelting and Separation in 2019, Ministry of Industry and Information Technology of the people’s Republic of China and Ministry of Natural Resources of the People’s Republic of China, Beijing [2019-03-15]. https://wap.miit.gov.cn/jgsj/ycls/xt/art/2020/art_ba89d18cb633481083e68c92f75dc141.html

  75. Z.H. Weng, S.M. Jowitt, G.M. Mudd, and N. Haque, A detailed assessment of global rare earth element resources: Opportunities and challenges, Econ. Geol., 110(2015), No. 8, p. 1925.

    Article  Google Scholar 

  76. S. Lei, W. Na, Z. Shuai, and G. Li, Overview on China’s rare earth industry restructuring and regulation reforms, J. Resour. Ecol., 8(2017), No. 3, p. 213.

    Google Scholar 

  77. Z.H. Weng, N. Haque, G.M. Mudd, and S.M. Jowitt, Assessing the energy requirements and global warming potential of the production of rare earth elements, J. Cleaner Prod., 139(2016), p. 1282.

    Article  CAS  Google Scholar 

  78. China Gold Association, Industry Statistics, China Gold Association, Beijing [2020-10-27]. http://www.cngold.org.cn/stats.aspx

  79. H.B. Zhou, W.M. Zeng, Z.F. Yang, Y.J. Xie, and G.Z. Qiu, Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor, Bioresour. Technol., 100(2009), No. 2, p. 515.

    Article  CAS  Google Scholar 

  80. S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, and A. Akcil, Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy, Hydrometallurgy, 153(2015), p. 98.

    Article  CAS  Google Scholar 

  81. Z.G. He, X.H. Xie, S.M. Xiao, J.S. Liu, and G.Z. Qiu, Microbial diversity of mine water at Zhong Tiaoshan copper mine, China, J. Basic Microbiol., 47(2007), No. 6, p. 485.

    Article  CAS  Google Scholar 

  82. Z.M. Dai, H.Q. Yin, X.X. Zeng, and X.D. Liu, Comparison of microbial community of acid mine drainage from Dongchuan copper pyrite, Prog. Mod. Biomed., 7(2007), No. 11, p. 1608.

    CAS  Google Scholar 

  83. J. Zhan and Q.Y. Sun, Development of microbial properties and enzyme activities in copper mine wasteland during natural restoration, CATENA, 116(2014), p. 86.

    Article  CAS  Google Scholar 

  84. X.D. Hao, Y.L. Liang, H.Q. Yin, L.Y. Ma, Y.H. Xiao, Y.Z. Liu, G.Z. Qiu, and X.D. Liu, The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures, Miner. Eng., 98(2016), p. 279.

    Article  CAS  Google Scholar 

  85. S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337.

    Article  CAS  Google Scholar 

  86. R.M. Ruan, J.K. Wen, and J.H. Chen, Bacterial heap-leaching: Practice in Zijinshan copper mine, Hydrometallurgy, 83(2006), No. 1–4, p. 77.

    CAS  Google Scholar 

  87. J. Liu, B.T. Fan, Y.S. Meng, Y. Zheng, C. Liu, and L. Zhou, Practice and prospect on bioleaching of uranium ore in China, Uranium Min. Metall., 27(2008), No. 3, p. 118.

    CAS  Google Scholar 

  88. R.M. Ruan, X.Y. Liu, G. Zou, J.H. Chen, J.K. Wen, and D.Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy, 108(2011), No. 1–2, p. 130.

    Article  CAS  Google Scholar 

  89. R.M. Ruan, G. Zou, S.P. Zhong, Z.L. Wu, B. Chan, and D.Z. Wang, Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity—Study on leaching kinetics of copper sulfides and its implications, Miner. Eng., 48(2013), p. 36.

    Article  CAS  Google Scholar 

  90. J.T. Yuan and Z.X. Sun, Development and prospects of the bacterial leaching uranium technology, China Min. Mag., 2008, No. 6, p. 45.

  91. X. Sun, Application of bioleaching technology in uranium heap leaching, Sci. Technol. Inf., 2009, No. 32, p. 5.

  92. T.J. Wang, Application of bioleaching technology in uranium mining, Jiangxi Chem. Ind., 2019, No. 3, p. 20.

  93. Q.S. Fan and Q.G. Chen, The microbial technology applied in the heap leaching of low-grade uranium ore, Rare Met. Cem. Carbides, 37(2009), No. 1, p. 45.

    CAS  Google Scholar 

  94. J.H. Liu, Y.P. Zhou, Y.J. Liu, Z.X. Sun, W.J. Shi, and B.Q. Hu, The new progress of uranium biology in-site leaching, China Min. Mag., 21(2012), No. S1, p. 262.

    Google Scholar 

  95. X.Y. Liu, B.W. Chen, and J.K. Wen, Dominance of Acidithiobacillus at ore surface of Zijinshan commercial low-grade copper bioleaching heap, Trans. Nonferrous Met. Soc. China, 18(2008), No. 6, p. 1506.

    Article  CAS  Google Scholar 

  96. M.X. Yang and G.J. She, Research history and status of bioleaching of uranium, China High-tech Enterp., 2009, No. 15, p. 5.

  97. X. Chen and D.H. Liao, Study on bacteria leaching mechanism of uranium ore and status quo of appliation at home and abroad, China Res. Compr. Util., 30(2012), No. 1, p. 34.

    Google Scholar 

  98. X.L. Liu, Z.Y. Zhao, Z.X. Gui, and A.J. Gong, Overview of microbial technology in the utilization of rare earth resources, Chin. J. Eng., 42(2020), No. 1, p. 60.

    Google Scholar 

  99. Y.H. Dai, H.L. Yang, G.W. Zhuo, L.L. Gong, and Y. Hu, Bioleaching technology and its application in three rare mineral resources, Shandong Chem. Ind., 46(2017), No. 11, p. 60.

    CAS  Google Scholar 

  100. P. Long, G.S. Wang, S. Zhang, S.L. Hu, and Y. Huang, A mathematical model for column leaching of ion adsorption-type rare earth ores, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 463.

    Article  CAS  Google Scholar 

  101. Y. Qu and B. Lian, Bioleaching of rare earth and radioactive elements from red mud using Penicilliumtricolor RM-10, Bioresour. Technol., 136(2013), p. 16.

    Article  CAS  Google Scholar 

  102. S.J. Li, J. He, C.H. Yi, and Y.K. Li, The study of using waste brewer’s yeast as a new sorbent for accumulation of lanthanides, J. Sichuan Uni. Nat. Sci. Ed., 33(1996), No. 5, p. 568.

    CAS  Google Scholar 

  103. W.M. Zeng, G.Z. Qiu, H.B. Zhou, J.H. Peng, M. Chen, S.N. Tan, W.L. Chao, X.D. Liu, and Y.S. Zhang, Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate, Bioresour. Technol., 101(2010), No. 18, p. 7068.

    Article  CAS  Google Scholar 

  104. S.Y. Li, H.J. Fu, and W. Dong, Research progress on the interaction of microorganisms and rare earth, J. Jiangxi Univ. Sci. Technol., 38(2017), No. 3, p. 56.

    Google Scholar 

  105. Z. Liu, S.B. Yang, X.M. Song, X.J. Nian, and H. Zhang, Development of bio-oxidation pretreatment of refractory gold ores, Hydrometall. China, 29(2010), No. 1, p. 9.

    Google Scholar 

  106. J.F. Li, H.Y. Yang, L.L. Tong, Z.N. Jin, and D.C. Zhang, Experimental study on bacterial oxidation-gold extraction of Paodaoling refractory gold concentrate, Gold Sci. Technol., 26(2018), No. 2, p. 248.

    Google Scholar 

  107. S. Wang, C. Li, and H.X. Li, Research progress of pretreatment technologies of refractory gold ores, Gold Sci. Technol., 22(2014), No. 4, p. 129.

    CAS  Google Scholar 

  108. W.Z. Yin, Z.X. Hong, Y.Q. Ma, and Q. Li, Research progress of pretreatment technology for as, S-bearing gold ore concentrate at home and abroad, Mod. Min., 27(2011), No. 2, p. 1.

    Google Scholar 

  109. R.C. Cui, H.Y. Yang, Y. Fu, S. Chen, and S. Zhang, Biooxidation-cyanidation leaching of gold concentrates with different arsenic types, Chin. J. Nonferrous Met., 21(2011), No. 3, p. 694.

    CAS  Google Scholar 

  110. X.J. Tian, D.P. Du, L.E. Peng, and X.H. Li, Bacterial leaching of gold ore, Geol. China, 2008, No. 3, p. 557.

  111. P.C. Ma, H.Y. Yang, and Z.Q. Han, Column bioleaching of low-grade primary gold ore, J. Northeast. Univ. Nat. Sci., 33(2012), No. 6, p. 857.

    CAS  Google Scholar 

  112. S.L. Zhang, J.Y. Liu, L.H. Yang, S.Y. Du, and Z.L. Wu, Bioleaching of Copper-cobalt-nickel polymetallic sulfide ores in Jilin, Multipurpos. Util. Miner. Re., 2020, No. 1, p. 50.

  113. S.J. Zhao, Y. Weng, and C. Xiao, Review on bioleaching of nickel/cobalt sulfide ore, Hunan Nonferrous Met., 27(2011), No. 6, p. 10.

    CAS  Google Scholar 

  114. F.Q. Dong, L.H. Xu, Q.W. Dai, S. Chen, and M.X. Liu, New progress in investigation on bioleaching of low-grade nickel-cobalt oxidized ore, Earth Environ., 41(2013), No. 4, p. 358.

    CAS  Google Scholar 

  115. H.F. Zhao, H.Y. Yang, L.L. Tong, Q. Zhang, and Y. Kong, Biooxidation-thiosulfate leaching of refractory gold concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1075.

    Article  CAS  Google Scholar 

  116. J. Liu, Y. Zheng, Y.S. Meng, and L. Zhou, Experimental investigation on bioleaching of low-grade cobalt ore, Hydrometall. China, 2008, No. 3, p. 148.

  117. W. Liu, H.Y. Yang, L.L. Tong, G.B. Chen, and Z.N. Jin, Effect of preconditioning of acid leaching-gravity separation on cobalt ore bioleaching, J. Mater. Metall., 14(2015), No. 2, p. 126.

    Google Scholar 

  118. W. Liu, S.J. Zhang, F. Sun, H.F. Huang, and C. Liu, Effect of silver ion on bioleaching of cobalt ore, Min. Metall. Eng., 39(2019), No. 1, p. 82.

    Google Scholar 

  119. X. Liu, Y.S. Song, and J.K. Wen, Dissolution behavior of arsenic-bearing complex nickel sulfide ores at low-temperature by bacteria leaching, Chin. J. Rare Met., 38(2014), No. 6, p. 1127.

    CAS  Google Scholar 

  120. J.Q. Wang, Q. Yan, C.L. Liang, and X.P. Luo, Research progress in bioleaching of nickel sulphide ore, Metal Mine, 2015, No. 8, p. 85.

  121. X. Li, W.C. Gao, J.K. Wen, B. Wu, and X. Liu, Technology status and research progress of zinc bioleaching, Chin. J. Eng., 42(2020), No. 6, p. 693.

    CAS  Google Scholar 

  122. H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang, Y.S. Zhang, J. Wang, H. Kim, and G.Z. Qiu, The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview, Miner. Eng., 136(2019), p. 140.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 52034001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Sh., Chen, W., Fan, Xl. et al. Review and prospects of bioleaching in the Chinese mining industry. Int J Miner Metall Mater 28, 1397–1412 (2021). https://doi.org/10.1007/s12613-020-2233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2233-7

Keywords

Navigation