Skip to main content
Log in

Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Al2O3 nanoparticles and MCrAlY/nano-Al2O3 nanocomposite powder (M = Ni, Co, or NiCo) were produced using high-energy ball milling. The MCrAlY/nano-Al2O3 coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxygen fuel thermal spraying. The morphological and microstructural examinations of the Al2O3 nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al2O3 nanocomposite powders were investigated using X-ray diffraction analysis, field-emission scanning electron microscopy coupled with electron dispersed spectroscopy, and transmission electron microscopy. The structural investigations and Williamson-Hall results demonstrated that the ball-milled Al2O3 powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al2O3 owing to its optimal nanocrystalline structure. In the case of developing MCrAlY/nano-Al2O3 nanocomposite powder, the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.U. Hardwicke and Y.C. Lau, Advances in thermal spray coatings for gas turbines and energy generation: A review, J. Therm. Spray Technol., 22(2013), No. 5, p. 564.

    Article  Google Scholar 

  2. G. Pulci, J. Tirillò, F. Marra, F. Sarasini, A. Bellucci, T. Valente, and C. Bartuli, High temperature oxidation and microstructural evolution of modified MCrAlY coatings, Metall. Mater. Trans. A, 45(2014), No. 3, p. 1401.

    Article  CAS  Google Scholar 

  3. D.R.G. Achar, R. Munoz-Arroyo, L. Singheiser, and W.J. Quadakkers, Modelling of phase equilibria in MCrAlY coating systems, Surf. Coat. Technol., 187(2004), No. 2, p. 272.

    Article  CAS  Google Scholar 

  4. I. Taie, A. Al-Shahrani, N. Qari, A. Fihri, W. Al-Obaid, and G. Alabedi, High temperature corrosion resistant coatings for gas flare systems, Ceram. Int., 44(2018), No. 5, p. 5124.

    Article  CAS  Google Scholar 

  5. H.R. Abedi, M. Salehi, and A. Shafyei, Mechanical and thermal properties of double-layer and triple-layer thermal barrier coatings with different ceramic top coats onto polyimide matrix composite, Ceram. Int., 43(2017), No. 15, p. 12770.

    Article  CAS  Google Scholar 

  6. A. Jam, S.M.R. Derakhshandeh, H. Rajaei, and A.H. Pakseresht, Evaluation of microstructure and electrochemical behavior of dual-layer NiCrAlY/mullite plasma sprayed coating on high silicon cast iron alloy, Ceram. Int., 43(2017), No. 16, p. 14146.

    Article  CAS  Google Scholar 

  7. F. Ghadami and A. Sabour Rouh Aghdam, Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments: A critical review, Thin Solid Films, 678(2019), p. 42.

    Article  CAS  Google Scholar 

  8. D. Kumar, K.N. Pandey, and D.K. Das, Microstructure studies of air-plasma-spray-deposited conicraly coatings before and after thermal cyclic loading for high-temperature application, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 934.

    Article  CAS  Google Scholar 

  9. G.L. Hou, Y.L. An, X.Q. Zhao, H.D. Zhou, and J.M. Chen, Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of hvof-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000°C, Acta Mater., 95(2015), p. 164.

    Article  CAS  Google Scholar 

  10. L. D. Zhao and E. Lugscheider, High velocity oxy-fuel spraying of a NiCoCrAlY and an intermetallic NiAl-TaCr alloy, Surf. Coat. Technol., 149(2002), No. 2, p. 230.

    Article  Google Scholar 

  11. L. Fan, H.Y. Chen, Y.H. Dong, L.H. Dong, and Y.S. Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 716.

    Article  CAS  Google Scholar 

  12. C. Tao, L. Wang, and X. Song, High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 222.

    Article  CAS  Google Scholar 

  13. K. Jithesh and M. Arivarasu, Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 649.

    Article  CAS  Google Scholar 

  14. M.J. Tobar, J.M. Amado, A. Yáñez, J.C. Pereira, and V. Amigó, Laser cladding of MCrAlY coatings on stainless steel, Phys. Procedia, 56(2014), p. 276.

    Article  CAS  Google Scholar 

  15. T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers, Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders, Mater. High Temp., 35(2018), No. 1–3, p. 97.

    Article  CAS  Google Scholar 

  16. J. Bergholz, B.A. Pint, K.A. Unocic, and R. Vaßen, Fabrication of oxide dispersion strengthened bond coats with low Al2O3 content, J. Therm. Spray Technol., 26(2017), No. 5, p. 868.

    Article  CAS  Google Scholar 

  17. F. Ghadami, M.H. Sohi, and S. Ghadami, Effect of bond coat and post-heat treatment on the adhesion of air plasma sprayed WC-Co coatings, Surf. Coat. Technol., 261(2015), p. 289.

    Article  CAS  Google Scholar 

  18. F. Ghadami, S. Ghadami, and H. Abdollah-Pour, Structural and oxidation behavior of atmospheric heat treated plasma sprayed WC-Co coatings, Vacuum, 94(2013), p. 64.

    Article  CAS  Google Scholar 

  19. F. Ghadami, A. Sabour Rouh Aghdam, S. Ghadami, and Q. Zeng, Effect of vacuum heat treatment on the oxidation kinetics of freestanding nanostructured NiCoCrAlY coatings deposited by high-velocity oxy-fuel spraying, J. Vac. Sci. Technol. A, 38(2020), No. 2, art. No. 022601.

  20. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Abrasive wear behavior of nano-ceria modified NiCoCrAlY coatings deposited by the high-velocity oxy-fuel process, Mater. Res. Express, 6(2020), No. 12, p. 1250d6.

    Article  CAS  Google Scholar 

  21. M. Heydarzadeh Sohi and F. Ghadami, Comparative tribological study of air plasma sprayed WC-12%Co coating versus conventional hard chromium electrodeposit, Tribol. Int., 43(2010), No. 5, p. 882.

    Article  CAS  Google Scholar 

  22. S. Ghadami, E. Taheri-Nassaj, H.R. Baharvandi, and F. Ghadami, Effect of SiC and MoSi2 in situ phases on the oxidation behavior of HfB2-based composites, Ceram. Int., 46(2020), No. 12, p. 20299.

    Article  CAS  Google Scholar 

  23. A. Sayyadi-Shahraki, S.M. Rafiaei, S. Ghadami, and K.A. Nekouee, Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites, J. Alloys Compd., 776(2019), p. 798.

    Article  CAS  Google Scholar 

  24. S. Ghadami, E. Taheri-Nassaj, and H.R. Baharvandi, Novel HfB2-SiC-MoSi2 composites by reactive spark plasma sintering, J. Alloys Compd., 809(2019), p. 151705.

    Article  CAS  Google Scholar 

  25. S. Ghadami, H.R. Baharvandi, and F. Ghadami, Influence of the vol% SiC on properties of pressureless Al2O3/SiC nanocomposites, J. Compos. Mater., 50(2016), No. 10, p. 1367.

    Article  CAS  Google Scholar 

  26. S. Ghadami, E. Taheri-Nassaj, H.R. Baharvandi, and F. Ghadami, Effect of in situ VSi2 and SiC phases on the sintering behavior and the mechanical properties of HfB2-based composites, Sci. Rep., 10(2020), No. 1, p. 16540.

    Article  CAS  Google Scholar 

  27. F. Ghadami, M. Heydarzadeh Sohi, and S. Ghadami, Effect of TIG surface melting on structure and wear properties of air plasma-sprayed WC-Co coatings, Surf. Coat. Technol., 261(2015), p. 108.

    Article  CAS  Google Scholar 

  28. K. Bobzin, T. Schläfer, K. Richardt, and M. Brühl, Development of oxide dispersion strengthened MCrAlY coatings, J. Therm. Spray Technol., 17(2008), p. 853.

    Article  CAS  Google Scholar 

  29. F. Tang, L. Ajdelsztajn, and J.M. Schoenung, Influence of cryomilling on the morphology and composition of the oxide scales formed on hvof CoNiCrAlY coatings, Oxid. Met., 61(2004), No. 3, p. 219.

    Article  CAS  Google Scholar 

  30. F. Ghadami, A. Zakeri, A.S.R. Aghdam, and R. Tahmasebi, Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings, Surf. Coat. Technol., 373(2019), p. 7.

    Article  CAS  Google Scholar 

  31. F. Ghadami and A.S. Rouh Aghdam, Preparation of NiCrAlY/nano-CeO2 powder with the core-shell structure using high-velocity oxy-fuel spraying process, Mater. Chem. Phys., 243(2020), art. No. 122551.

  32. S. Ghadami S, E. Taheri-Nassaj, H.R. Baharvandi and F. Ghadami, Improvement of mechanical properties of HfB 2-based composites by incorporating in situ SiC reinforcement through pressureless sintering, Sci. Rep., 11(2021), art. No. 9835.

  33. M. Sameezadeh, H. Farhangi, and M. Emamy, Structural characterization of AA 2024-MoSi2 nanocomposite powders produced by mechanical milling, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 298.

    Article  CAS  Google Scholar 

  34. B. Li, J. Jia, Y. Gao, M. Han, and W. Wang, Microstructural and tribological characterization of NiAl matrix self-lubricating composite coatings by atmospheric plasma spraying, Tribol. Int., 109(2017), p. 563.

    Article  CAS  Google Scholar 

  35. Z. Khodsiani, H. Mansuri, and T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina, Powder Technol., 245(2013), p. 7.

    Article  CAS  Google Scholar 

  36. R.A. Mahesh, R. Jayaganthan, and S. Prakash, A study on the oxidation behavior of HVOF sprayed NiCrAlY-0.4wt.% CeO2 coatings on superalloys at elevated temperature, Mater. Chem. Phys., 119(2010), No. 3, p. 449.

    Article  CAS  Google Scholar 

  37. S. Kamal, R. Jayaganthan, and S. Prakash, Mechanical and microstructural characteristics of detonation gun sprayed NiCrAlY+0.4wt% CeO2 coatings on superalloys, Mater. Chem. Phys., 122(2010), No. 1, p. 262.

    Article  CAS  Google Scholar 

  38. F. Ghadami, A. Sabour Rouh Aghdam, A. Zakeri, B. Saeedi, and P. Tahvili, Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF, Ceram. Int., 46(2020), No. 4, p. 4556.

    Article  CAS  Google Scholar 

  39. F. Ghadam, A.S. Rouh Aghdam, and S. Ghadami, Preparation, characterization and oxidation behavior of CeO2-gradient NiCrAlY coatings applied HVOF thermal spraying process, Ceram. Int., 46(2020), No. 12, p. 20500.

    Article  CAS  Google Scholar 

  40. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22.

    Article  CAS  Google Scholar 

  41. E.M. Anghel, M. Marcu, A. Banu, I. Atkinson, A. Paraschiv, and S. Petrescu, Microstructure and oxidation resistance of a NiCrAlY/Al2O3-sprayed coating on Ti-19Al-10Nb-V alloy, Ceram. Int., 42(2016), No. 10, p. 12148.

    Article  CAS  Google Scholar 

  42. M. Tahari, M. Shamanian, and M. Salehi, Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method, J. Alloys Compd., 525(2012), p. 44.

    Article  CAS  Google Scholar 

  43. D. Mercier, B.D. Gauntt, and M. Brochu, Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings, Surf. Coat. Technol., 205(2011), No. 17–18, p. 4162.

    Article  CAS  Google Scholar 

  44. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater Sci., 46(2001), No. 1–2, p. 1.

    CAS  Google Scholar 

  45. S. Saeidi, K.T. Voisey, and D.G. McCartney, The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings, J. Therm. Spray Technol., 18(2009), No. 2, p. 209.

    Article  CAS  Google Scholar 

  46. R. Sachan and J.W. Park, Formation of nanodispersoids in Fe-Cr-Al/30%TiB2 composite system during mechanical alloying, J. Alloys Compd., 485(2009), No. 1–2, p. 724.

    Article  CAS  Google Scholar 

  47. L. Ajdelsztajn, J.A. Picas, G.E. Kim, F.L. Bastian, J. Schoenung, and V. Provenzano, Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder, Mater. Sci. Eng. A, 338(2002), No. 1–2, p. 33.

    Article  Google Scholar 

  48. C. Suryanarayana, Synthesis of nanocomposites by mechanical alloying, J. Alloys Compd., 509(2011), p. S229.

    Article  CAS  Google Scholar 

  49. P. Sharma and J. Dutta Majumdar, Studies on nano-crystalline CoNiCrAlY consolidated by conventional and microwave sintering, Adv. Powder Technol., 27(2016), No. 1, p. 72.

    Article  CAS  Google Scholar 

  50. M. Daroonparvar, M.S. Hussain, and M.A.M. Yajid, The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air, Appl. Surf. Sci., 261(2012), p. 287.

    Article  CAS  Google Scholar 

  51. N. Rana, M.M. Mahapatra, R. Jayaganthan, and S. Prakash, Deposition of nanocrystalline coatings by modified LVOF thermal spray method, J. Alloys Compd., 615(2014), p. 779.

    Article  CAS  Google Scholar 

  52. L.D. Zhao, M. Parco, and E. Lugscheider, Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating, Surf. Coat. Technol., 184(2004), No. 2–3, p. 298.

    Article  CAS  Google Scholar 

  53. F. Ghadami, A. Sabour Rouh Aghdam, and S. Ghadami, Mechanism of the oxide scale formation in thermally-sprayed NiCoCrAlY coatings modified by CeO2 nanoparticles, Mater. Today Commun., 24(2020), p. 101357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Materials Engineering, Tarbiat Modares University, Iran. The first author is also grateful to Mr. Mohammad Amin Davoudabadi for the final proofreading the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Ghadami or A. Sabour Rouh Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadami, F., Aghdam, A.S.R. & Ghadami, S. Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition. Int J Miner Metall Mater 28, 1534–1543 (2021). https://doi.org/10.1007/s12613-020-2113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2113-1

Keywords

Navigation