Skip to main content
Log in

60 GHz Double Deck T-Gate AlN/GaN/AlGaN HEMT for V-Band Satellites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The influence of double deck T-gate on LG = 0.2 μm AlN/GaN/AlGaN HEMT is analysed in this paper. The T-gate supported with Silicon Nitride provides a tremendous mechanical reliability. It drops off the crest electric-field at gate edges and postponing the breakdown voltage of a device. A 0.2-μm double deck T-gate HEMT on Silicon Carbide substrate offer fMAX of 107 Giga Hertz, fT of 60 Giga Hertz and the breakdown voltage of 136 Volts. Furthermore, it produces the maximum-transconductance and drain-current of 0.187 Siemens/mm and 0.41 Ampere/mm respectively. In addition, the lateral electric-field noticed at gate-edge shows 2.1 × 106 Volts/cm. Besides, the double deck T-gate AlN/GaN HEMT achieves a 45% increment in breakdown voltage compared to traditional GaN-HEMT device. Moreover, it reveals a remarkable Johnson figure-of-merit of 7.9 Tera Hertz Volt. Therefore, the double deck T-gate on AlN/GaN/AlGaN HEMT is the superlative device for 60 GHz V-band satellite application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Augustine Fletcher AS, Nirmal D (2017) A survey of gallium nitride HEMT for RF and high power application. Superlat Micro Journ 109:519–537

    Article  Google Scholar 

  2. Amano H, Baines Y, Beam E, Borga M, Bouchet T, Chalker PR, Charles (2018) The 2018 GaN power electronics roadmap. J Phys D Appl Phys 51:1–49

    Article  Google Scholar 

  3. Herbecq N, Roch I, Linge A, Zegaoui M, Olivier P, Rouger N, Medjdoub F (2016) Above 2000V breakdown voltage at 600 K GaN-on- silicon high electron mobility transistors. Journ of Phys. Status Solid A 213(4):873–877

    Article  CAS  Google Scholar 

  4. Augustine Fletcher AS, Nirmal D, Arivazhagan L, Ajayan J, Varghese A (2020) Enhancement of Johnson figure of merit in III-V HEMT combined with discrete field plate and AlGaN blocking layer. RF micro Comp-aid Eng 30(2):1–9

    Google Scholar 

  5. Wang Z, Cao J, Sun R, Wang F, Yao Y (2018) Numerical investigation on AlGaN/GaN short channel HEMT with AlGaN/InGaN/AlGaN quantum well plate. Superlat Microst 120:753–758

    Article  CAS  Google Scholar 

  6. Singh SP, Chaturvedi N (2015) Influence of AlGaN and InGaN Back barriers on the performance of AlGaN/GaN HEMT. IETE Tech Rev 33(1):40–44

    Article  CAS  Google Scholar 

  7. Keshmiri N, Wang D, Agrawal B, Hou R, Emadi A (2020) Current status and future trends of GaN HEMTs in electrified transportation. IEEE Acc 8:70553–70571

    Article  Google Scholar 

  8. Nirmal D, Arivazhagan L, Augustine Fletcher AS, Ajayan J, Prajoon P (2018) Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlat Microst 113:110–120

    Article  Google Scholar 

  9. Saito W, Suwa T, Uchihara T, Naka T, Kobayashi T (2015) Breakdown behaviour of high- voltage GaN-HEMTs. Microelec realiab:55(10): 1682–55(10): 1686

  10. Li L, Nomoto K, Pan M, Li W, Hickman A, Miller J, Lee K, Hu Z (2020) GaN HEMTs on Si with regrown contacts and cutoff/maximum oscillation frequencies of 250/204 GHz. IEEE Elect Dev Lett 41(5):689–692

    Article  CAS  Google Scholar 

  11. Denninghoff DJ, Dasgupta S, Lu J, Keller S, Mishra UK (2012) Design of High-Aspect-Ratio T-gates on N-polar GaN/AlGaN MIS-HEMTs for high fMAX. IEEE Elect Dev Lett 33(6):785–787

    Article  CAS  Google Scholar 

  12. Latorre-Rey AD, Albrecht JD, Saraniti M (2018) A ∏-shaped gate Design for Reducing hot-Electron Generation in GaN HEMTs. IEEE Trans Elect Dev 65(10):4263–4270

    Article  CAS  Google Scholar 

  13. Wang Z, Chen W, Wang F, Cao J, Sun R, Ren K, Luo Y, Guo S, Wang Z, Jin X, Yang L, Zhang B (2018) Simulation study of AlGaN/GaN with Γ-shaped anode for ultra-low turn on voltage. Superlat Microst Jour 117:330–335

    Article  CAS  Google Scholar 

  14. Maher H, Decobert J, Falcou A, Le Pallec M, Post G, Nissim YI, Scavennec A (1999) A triple channel HEMT on InP (camel HEMT) for large-signal high-speed applications. IEEE Trans Elect Dev 46(1):32–37

    Article  CAS  Google Scholar 

  15. Hanawa H, Onodera H, Nakajima A, Horio K (2013) Similarities of lags, current collapse and breakdown characteristics between source and gate field-plate AlGaN/GaN HEMTs. IEEE Int Symp Realib Phys 24:152–156

    Google Scholar 

  16. Augustine Fletcher AS, Nirmal D, Ajayan J, Arivazhagan L (2019) Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Inter Jour Elect Comm 99:325–330

    Article  Google Scholar 

  17. Bahat-Treidel E (2010) AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs). IEEE Trans Elect Dev 57(6):1208–1216

    Article  Google Scholar 

  18. Hasan M, Tanvir MD, Asano T, Tokuda H, Kuzuhara M (2013) Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs. IEEE Elect Dev Lett 34(11):1379–1381

    Article  CAS  Google Scholar 

  19. Sehra K, Kumari V, Gupta M (2020) Optimization of π – gate AlGaN/AlN/GaN HEMTs for low noise and high gain applications. Silicon:1–8. https://doi.org/10.1007/s12633-020-00805-7

  20. Murugapandiyan P, Ravimaran S, William J, Meenakshi Sundaram K (2017) Design and analysis of 30 nm T-gate InAlN/GaN HEMT with AlGaN back-barrier for high power microwave applications. Superlat Microst 111:1050–1057

    Article  CAS  Google Scholar 

  21. Subramani NK, Sahoo AK, Nallatamby JC, Sommet R, Rolland N, Medjdoub F, Quére R (2016) Characterization of parasitic resistances of AlN/GaN/AlGaN HEMTs through TCAD-based device simulations and on-wafer measurements. IEEE Trans Micro Theo Tech 64(5):1351–1358

    Article  Google Scholar 

  22. Ambacher O (1999) Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys 85(6):3222–3233

    Article  CAS  Google Scholar 

  23. Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett 77(2):250–252

    Article  CAS  Google Scholar 

  24. P Murugapandiyan, Md. Tanvir Hasan, V Rajya Lakshmi, Mohd Wasim, J Ajayan, N Ramkumar & D Nirmal (2020) Breakdown voltage enhancement of gate field plate Al0.295Ga0.705N/GaNHEMTs, International Journal of Electronics, DOI: 10.1080/00207217.2020.1849819, 1-18

  25. Shreepad Karmalkar, Umesh K. Mishra,“Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator”, Sol-Stat Electron Dev,45 (9), 1645–1652 (2001)

  26. Ghosh S, Ahsan SA, Chauhan YS, Khandelwal S (2016) Modeling of source/drain access resistances and their temperature dependence in GaN HEMTs. IEEE Inter Con Elect Dev Sol Stat Circts doi: https://doi.org/10.1109/EDSSC.2016.7785254

  27. Saha G, Sen B, Deyasi A (2018) Calculating Transconductance of Nano-HEMT for different parasitic resistances and external biasing conditions. Inter Con Elect, Mat Engg Nan-Tec. https://doi.org/10.1109/IEMENTECH.2018.8465168

  28. Bo S, Sensale-Rodriguez B, Wang R, Guo J, Hu Z, Yue Y, Faria F, Schuette M, Ketterson A, Beam E, Saunier P, Gao X, Guo S, Fay P, Jena D, Xing HG (2014) Effect of fringing capacitances on the RF performance of GaN HEMTs with T-gates. IEEE Trans Elect Dev 61(3):747–754

    Article  Google Scholar 

  29. Kumar SP, Chaujar R, Gupta M, Gupta RS, Agrawal A (2007) Analytical modeling and simulation of potential and electric field distribution in dual material gate HEMT for suppressed Short Channel effects. Asia-Pacific Microwav Conf doi. https://doi.org/10.1109/APMC.2007.4554703

  30. Meneghesso G, Meneghini M, Zanoni E (2014) Breakdown mechanisms in AlGaN/GaN HEMTs: an overview. Jap Jour App Phys 53(10):1–8

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Centre for Research in Semiconductor Devices, Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India for providing all facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

1. A.S. Augustine Fletcher- TCAD Simulation and paper writing.

2. D. Nirmal- Idea and concept.

3. J. Ajayan-Idea and concept.

4. L. Arivazhagan- Idea and concept.

5. Husna Hamza- Paper editing and English correction.

6. P. Murugapandian-Paper editing and English correction.

Corresponding author

Correspondence to D. Nirmal.

Ethics declarations

Ethics Approval and Consent to Participate

“All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the comparable ethical standards.”

“For this type of study, formal consent is not required.”

Consent for Publication

Authors give consent for the publication of the Submitted Research article in Silicon.

Informed Consent

“Not Applicable”.

Conflict of Interest

The authors declare that there is no conflict of interest reported in this paper.

Competing Interests

The authors declare that they have no known competing financial interests.

Research Involving Human Participants and/or Animals

“Not Applicable”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, A.S.A., Nirmal, D., Ajayan, J. et al. 60 GHz Double Deck T-Gate AlN/GaN/AlGaN HEMT for V-Band Satellites. Silicon 14, 5941–5949 (2022). https://doi.org/10.1007/s12633-021-01367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01367-y

Keywords

Navigation