Skip to main content
Log in

Investigation of time-dependent stability and surface defects in sol–gel derived IGZO and IZO thin films

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, we investigated the thin film properties, stability, and surface defects of various compositions of indium gallium zinc oxide (IGZO) and indium zinc oxide (IZO) thin films. The thin films of IGZO and IZO were obtained through the solution processing route and deposited using the spin coating technique. All films were found to be amorphous with roughness below 2.0 nm. Further, it was established that the introduction of gallium helps in controlling the electrical resistivity and stabilizing the amorphous phase of IGZO films. The time-dependent study of IGZO and IZO thin films reveals that the films remain structurally stable for one month. However, a slight change in the morphology can be seen after 13 days. The films which seem to be uniform and smooth under an optical microscope also contain few dark spots as well. These dark spots upon close investigation using atomic force microscopy (AFM) and electron probe microscope analyzer (EPMA) reveal that they are the part of films themselves, stand in a vertical position, and the composition on these spots is high in indium content. Simultaneously, the measured composition of the spot-free surface is always less in indium content in comparison to the expected composition. In this study, our findings predict that in the case of solution-processed IGZO and IZO thin films there is a possibility of movement of indium ions to form a surface defect, which in turn can lead to the poor performance of IGZO and IZO based devices.

Highlights

  • Effect of compositional change on thin film properties of solution-processed IGZO and IZO thin films.

  • Time-dependent stability of solution-processed IGZO and IZO thin films.

  • Types of surface defects appearing in solution-processed IGZO and IZO thin films.

  • Compositional analysis on the surface defects.

  • Morphological analysis of surface defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eslamian M (2016) Inorganic and organic solution-processed thin film devices. Nano-Micro Lett 9(1):3. p2016/09/08/

    Article  CAS  Google Scholar 

  2. Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK(2019) Recent advances in preparation methods for catalytic thin films and coatings Catal Sci Technol 9(14):3582–3602. https://doi.org/10.1039/C9CY00518H

  3. Gao W, Zhu Y, Wang Y, Yuan G, Liu JM (2020) A review of flexible perovskite oxide ferroelectric films and their application. J Materiomics 6(1):1–16. pp2020/03/01/

    Article  Google Scholar 

  4. Dausch DE, and Haertling GH (1992) Bulk vs. thin film PLZT ferroelectrics, In Proceedings of the eighth IEEE international symposium on applications of ferroelectrics, ISAF ‘92: pp. 297–300, 1992/09/02 1992

  5. Kammler DR, Mason TO, Young DL, Coutts TJ, Ko D, Poeppelmeier KR, Williamson DL (2001) Comparison of thin film and bulk forms of the transparent conducting oxide solution Cd1+xIn2−2xSnxO4. J Appl Phys 90(12):5979–5985. pp2001/12/15/

    Article  CAS  Google Scholar 

  6. Yang B, He M, Wen K, Xiong D, Feng Y, Ta S, and Yang Z (2020) Comparison of morphology, electrical properties and sensitivity between bulk and thin-film Mn1.5Co1Ni0.5O4 thermistors, Ceram Int, 2020/07/22/ 2020

  7. Hassanien AS, Sharma I, Akl AA (2020) Physical and optical properties of a-Ge-Sb-Se-Te bulk and film samples: refractive index and its association with electronic polarizability of thermally evaporated a-Ge15-xSbxSe50Te35 thin-films. J Non-Crystalline Solids 531:119853. p2020/03/01/

    Article  CAS  Google Scholar 

  8. Wu J, Fan Z, Xiao D, Zhu J, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402. pp2016/12/01/

    Article  CAS  Google Scholar 

  9. Abegunde OO, Akinlabi ET, Oladijo OP, Akinlabi S, Ude AU (2019) Overview of thin film deposition techniques. AIMS Mater Sci 6(2):174–199. pp2019/03/13/

    Article  CAS  Google Scholar 

  10. Greene JE (2017) Tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J Vac Sci Technol A 35(5):05C204. p2017/09/01/

    Article  CAS  Google Scholar 

  11. Liu A, Zhu H, Noh YY (2019) Solution-processed inorganic p-channel transistors: recent advances and perspectives. Mater Sci Eng: R Rep 135:85–100. pp2019/01/01/

    Article  Google Scholar 

  12. Park S, Kim CH, Lee WJ, Sung S, Yoon MH (2017) Sol-gel metal oxide dielectrics for all-solution-processed electronics. Mater Sci Eng R: Rep 114:1–22. pp2017/04/01/

    Article  Google Scholar 

  13. Irani FS, Kosemen A, Camic BT, Oytun F, Tunaboylu B, Shin HJ, Nam KY, Choi H (2017) Recent progresses on solution-processed silver nanowire-based transparent conducting electrodes for organic solar cells. Mater Today Chem 3:60–72. pp2017/03/01/

    Article  Google Scholar 

  14. Wang Q, Xie Y, Kordshuli FS, Eslamian M (2016) Progress in emerging solution-processed thin-film solar cells—Part I: Polymer solar cells. Renew Sustain Energy Rev 56:347–361. pp2016/04/01/

    Article  CAS  Google Scholar 

  15. Habibi M, Zabihi F, Yazdi MRA, Eslamian M (2016) Progress in emerging solution-processed thin-film solar cells—Part II: Perovskite solar cells. Renew Sustain Energy Rev 62:1012–1031. pp2016/09/01/

    Article  CAS  Google Scholar 

  16. Bae SH, Zhao H, Hsieh YT, Zuo L, Marco ND, Rim YS, Li G, Yang Y (2016) Printable solar cells from advanced solution-processible materials. Chem 1(2):197–219. pp2016/08/11/

    Article  CAS  Google Scholar 

  17. Shobana M, Meher SR (2019) Effect of cobalt doping on the structural, optical and magnetic properties of sol-gel derived ZnS nanocrystalline thin films and ab initio studies. Thin Solid Films 683:97–110. pp2019/08/01/

    Article  CAS  Google Scholar 

  18. Jiang Y, Wang W, Jing C, Cao C, Chu J (2011) Sol–gel synthesis, structure and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Mater Sci Eng: B 176(16):1301–1306. pp2011/09/25/

    Article  CAS  Google Scholar 

  19. Choudhary I, Shukla R, Sharma A, Raina KK (2020) Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide. J Mater Sci: Mater Electron 31(22):20033–20042. pp2020/11/01/

    Google Scholar 

  20. Ganesan S, Mehta S, Gupta D (2019) Fully printed organic solar cells—a review of techniques, challenges and their solutions. Opto-Electron Rev 27(3):298–320. pp2019/09/01/

    Article  Google Scholar 

  21. Shen YK, Liu Z, Wang XL, Ma WK, Chen ZH, Chen TP, Zhang HY (2017) Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations. Solid-State Electron 138:108–112. pp2017/12/01/

    Article  CAS  Google Scholar 

  22. Everaerts K, Zeng L, Hennek JW, Camacho DI, Jariwala D, Bedzyk MJ, Hersam MC, Marks TJ (2013) Printed indium gallium zinc oxide transistors. self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility. Acs Appl Mater Interfaces 5(22):11884–11893. pp2013/11/04/

    Article  CAS  Google Scholar 

  23. Wannes HB, Zaghouani RB, Ouertani R, Araujo A, Mendes MJ, Aguas H, Fortunato E, Martins R, Dimassi W (2018) Study of the stabilizer influence on the structural and optical properties of sol-gel spin-coated zinc oxide films. Mater Sci Semiconductor Process 74:80–87. pp2018/02/01/

    Article  CAS  Google Scholar 

  24. Nistico R, Scalarone D, Magnacca G (2017) Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater 248:18–29. pp2017/08/01/

    Article  CAS  Google Scholar 

  25. Carrado A, Viart N (2010) Nanocrystalline spin-coated sol–gel hydroxyapatite thin films on Ti substrate: towards potential applications for implants. Solid State Sci 12(7):1047–1050. pp2010/07/01/

    Article  CAS  Google Scholar 

  26. Aboulouard A, Gultekin B, Can M, Erol M, Jouaiti A, Elhadadi B, Zafer C, Demic S (2020) Dye-sensitized solar cells based on titanium dioxide nanoparticles synthesized by flame spray pyrolysis and hydrothermal sol-gel methods: a comparative study on photovoltaic performances. J Mater Res Technol 9(2):1569–1577. pp2020/03/01/

    Article  CAS  Google Scholar 

  27. Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Bojinova A, Dushkin C (2012) A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol–gel method. Surf Coat Technol 207:5–10. pp2012/08/25/

    Article  CAS  Google Scholar 

  28. Luyo C, Fabregas I, Reyes L, Solis JL, Rodriguez J, Estrada W, Candal RJ (2007) SnO2 thin-films prepared by a spray–gel pyrolysis: Influence of sol properties on film morphologies. Thin Solid Films 516(1):25–33. pp2007/11/01/

    Article  CAS  Google Scholar 

  29. Khazali SMSA, Salman HSA, Hmood A (2020) Low cost flexible ultraviolet photodetector based on ZnO nanorods prepared using chemical bath deposition. Mater Lett 277:128177. p2020/10/15/

    Article  CAS  Google Scholar 

  30. Boda MA, Cırak BB, Demir Z, Cırak C (2019) Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell. Mater Lett 248:143–145. pp2019/08/01/

    Article  CAS  Google Scholar 

  31. Ahmed MA, Coetsee L, Meyer WE, Nel JM (2019) Influence (Ce and Sm) co-doping ZnO nanorods on the structural, optical and electrical properties of the fabricated Schottky diode using chemical bath deposition. J Alloy Compd 810:151929. p2019/11/25/

    Article  CAS  Google Scholar 

  32. Urper O, Baydogan N (2020) Effect of Al concentration on optical parameters of ZnO thin film derived by Sol-Gel dip coating technique. Mater Lett 274:128000. p2020/09/01/

    Article  CAS  Google Scholar 

  33. Rad HRB, Hamzah E, Dias GJ, Saud SN, Yaghoubidoust F, Hadisi Z (2017) Fabrication and characterisation of novel ZnO/MWCNT duplex coating deposited on Mg alloy by PVD coupled with dip-coating techniques. J Alloy Compd 728:159–168. pp2017/12/25/

    Article  CAS  Google Scholar 

  34. Venema L (2011) Ilicon electronics and beyond. Nature 479(7373):309–309. pp2011/11/01/

    Article  CAS  Google Scholar 

  35. Haddara YM, Ashburn P, and Bagnall DM (2017) Silicon-germanium: properties, growth and applications, Springer handbook of electronic and photonic materials, Kasap S and Capper P, (eds) Cham: Springer International Publishing, pp. 1–1

  36. Zhang Y, Sun H, Chen W (2018) A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J Phys Chem Solids 114:207–219. pp.2018/03/01/

    Article  CAS  Google Scholar 

  37. Roy S, Majumder SB (2012) Recent advances in multiferroic thin films and composites. J Alloy Compd 538:153–159. pp2012/10/15/

    Article  CAS  Google Scholar 

  38. Martin LW, Chu YH, Ramesh R (2010) Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater Sci Eng R: Rep 68(4):89–133. pp2010/05/20/

    Article  CAS  Google Scholar 

  39. Khomskii DI (2006) Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 306(1):1–8. pp2006/11/01/

    Article  CAS  Google Scholar 

  40. Ramesh R, Aggarwal S, Auciello O (2001) Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories. Mater Sci Eng R: Rep 32(6):191–236. pp2001/04/16/

    Article  Google Scholar 

  41. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Sci Technol 20(4):S35–S44. pp2005/03/15/

    Article  CAS  Google Scholar 

  42. Granqvist CG, Hultaker A(2002) Transparent and conducting ITO films: new developments and applications Thin Solid Films 411(1):1–5 ppArt. no. Pii s0040-6090(02)00163-3, 2002/05/22/

    Article  CAS  Google Scholar 

  43. Robertson J (2011) New high-K materials for CMOS applications, In Comprehensive semiconductor science and technology, Bhattacharya P, Fornari R, and Kamimura H, Eds. Amsterdam: Elsevier, pp. 132–176

  44. Long D (1969) Properties of semiconductors useful for sensors. IEEE Trans Electron Devices 16(10):836–839. pp1969/10/02/

    Article  Google Scholar 

  45. Kim DG, Kim JU, Lee JS, Park KS, Chang YG, Kim MH, Choi DK(2019) Negative threshold voltage shift in an a-IGZO thin film transistor under X-ray irradiation. RSC Adv 9(36):20865–20870. https://doi.org/10.1039/C9RA03053K pp2019/07/03/

  46. Lorenz M, Rao MSR, Venkatesan T, Fortunato E, Barquinha P, Branquinho R, Salgueiro D, Martins R, Carlos E, Liu A, Shan FK, Grundmann M, Boschker H, Mukherjee J, Priyadarshini M, Gupta ND, Rogers DJ, Teherani FH, Sandana EV, Bove P, Rietwyk K, Zaban A, Veziridis A, Weidenkaff A, Muralidhar M, Murakami M, Abel S, Fompeyrine J, Perez JZ, Ramesh R, Spaldin NA, Ostanin S, Borisov V, Mertig I, Lazenka V, Srinivasan G, Prellier W, Uchida M, Kawasaki M, Pentcheva R, Gegenwart P, Granozio FM, Fontcuberta J, Pryds N (2016) The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D: Appl Phys 49(43):433001. p2016/10/07/

    Article  CAS  Google Scholar 

  47. Ahn BD, Jeon HJ, Sheng JZ, Park J, Park JS (2015) A review on the recent developments of solution processes for oxide thin film transistors. Semiconductor Sci Technol 30(6):064001. Art. no. 2018/05/08/

    Article  CAS  Google Scholar 

  48. Hosono H, Yasukawa M, Kawazoe H (1996) Novel oxide amorphous semiconductors: transparent conducting amorphous oxides. J Non-Crystalline Solids 203:334–344. pp1996/08/01/

    Article  CAS  Google Scholar 

  49. Hosono H, Kikuchi N, Ueda N, Kawazoe H (1996) Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Crystalline Solids 198–200:165–169. Part 1, pp1996/05/02/

    Article  Google Scholar 

  50. Choudhary I, Deepak (2017) Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide. Mater Sci Eng: B 218:64–73. ppApr

    Article  CAS  Google Scholar 

  51. Ye L, Hong Y, Liao M, Wang B, Wei D, Peng H, Ye L, Hong Y, Liao M, Wang B, Wei D, Peng H (2020) Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater 28:364–374. pp2020/06/01/

    Article  Google Scholar 

  52. Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G (2020) Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater Today 35:168–194. pp2020/05/01/

    Article  CAS  Google Scholar 

  53. Shrivas K, Ghosale A, Bajpai PK, Kant T, Dewangan K, Shankar R (2020) Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: a review. Microchemical J 156:104944. p2020/07/01/

    Article  CAS  Google Scholar 

  54. Liu W, Wang H (2020) Flexible oxide epitaxial thin films for wearable electronics: fabrication, physical properties, and applications. J Materiomics 6(2):385–396. pp2020/06/01/

    Article  Google Scholar 

  55. Xu X, Sun L, Shen K, Zhang S (2019) Organic and hybrid organic-inorganic flexible optoelectronics: recent advances and perspectives. Synth Met 256:116137. p2019/10/01/

    Article  CAS  Google Scholar 

  56. Petti L, Munzenrieder N, Vogt C, Faber H, Buthe L, Cantarella G, Bottacchi F, Anthopoulos TD, Troster G (2016) Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev 3(2):021303. p. 53, Art. no. 2016/06/09/

    Article  CAS  Google Scholar 

  57. Yu XG, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15(4):383–396. pp2016/03/23

    Article  CAS  Google Scholar 

  58. Suko A, Jia JJ, Nakamura S, Kawashima E, Utsuno F, Yano K, Shigesato Y (2016) Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance. Jpn J Appl Phys 55(3):035504. p. 5, Art. no. 2016/02/16

    Article  CAS  Google Scholar 

  59. Street RA, Ng TN, Lujan RA (2014) Sol-gel solution-deposited InGaZnO thin film transistors. Acs Appl Mater Interfaces 6(6):4428–4437. pp2014/03/04

    Article  CAS  Google Scholar 

  60. Wang Y, Liu SW, Sun XW, Zhao JL, Goh GKL, Vu QV, Yu HY (2010) “Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J Sol-Gel Sci Technol 55(3):322–327. pp2010/06/04/

    Article  CAS  Google Scholar 

  61. Park SK, Kim YH, Han JI (2009) All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors. J Phys D-Appl Phys 42(12):125102. Art. no. 2009/05/22/

    Article  CAS  Google Scholar 

  62. Koo CY, Kim D, Jeong S, Moon J, Park C, Jeon M, Sin WC, Jung J, Woo HJ, Kim SH, Ha J (2008) Sol-gel derived Ga-In-Zn-O semiconductor layers for solution-processed thin-film transistors. J Korean Phys Soc 53(1):218–222. pp2008/07/02/

    Article  CAS  Google Scholar 

  63. Jeon H, Na S, Moon MR, Jung D, Kim H, Lee HJ (2011) The effects of Zn ratio on the microstructure electrical properties of InGaZnO films. J Electrochem Soc 158(10):H949–H954. pp2011/07/27/

  64. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46. ppJan

    Article  CAS  Google Scholar 

  65. Devi V, Kumar M, Shukla DK, Choudhary RJ, Phase DM, Kumar R, Joshi BC (2015) Structural, optical and electronic structure studies of Al doped ZnO thin films. Superlattices Microstruct 83:431–438. ppJul

    Article  CAS  Google Scholar 

  66. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37(17):10244–10248. pp1988/06/15/

    Article  CAS  Google Scholar 

  67. Kim GH, Ahn BD, Shin HS, Jeong WH, Kim HJ, Kim HJ (2009) Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin-film transistors. Appl Phys Lett 94(23):233501. Art. no. 2009/06/08

    Article  CAS  Google Scholar 

  68. Jeong S, Ha YG, Moon J, Facchetti A, Marks TJ (2010) Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv Mater 22(12):1346. pp2010/03/23/

    Article  CAS  Google Scholar 

  69. Choudhary I, Deepak(2021) Study on dielectric properties of PVP and Al2O3 thin films and their implementation in low-temperature solution-processed IGZO-based thin-film transistors J Mater Sci: Mater Electron 32(6):7875–7888 pp2021/03/01/

    CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishan Choudhary.

Ethics declarations

Conflict of interest

I wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. Signed by all authors as follows: Ishan Choudhary and Deepak.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, I., Deepak Investigation of time-dependent stability and surface defects in sol–gel derived IGZO and IZO thin films. J Sol-Gel Sci Technol 100, 132–146 (2021). https://doi.org/10.1007/s10971-021-05615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05615-w

Keywords

Navigation