Skip to main content
Log in

Atomistic Simulations Modify Interpretation of Spin-Label Oximetry Data. Part 1: Intensified Water–Lipid Interfacial Resistances

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

A Correction to this article was published on 14 June 2022

This article has been updated

Abstract

The role of membrane cholesterol in cellular function and dysfunction has been the subject of much inquiry. A few studies have suggested that cholesterol may slow oxygen diffusive transport, altering membrane physical properties and reducing oxygen permeability. The primary experimental technique used in recent years to study membrane oxygen transport is saturation-recovery electron paramagnetic resonance (EPR) oximetry, using spin-label probes targeted to specific regions of a lipid bilayer. The technique has been used, in particular, to assess the influence of cholesterol on oxygen transport and membrane permeability. The reliability of such EPR recordings at the water–lipid interface near the phospholipid headgroups has been challenged by all-atom molecular dynamics (MD) simulation data that show substantive agreement with spin-label probe measurements throughout much of the bilayer. This work uses further MD simulations, with an updated oxygen model, to determine the location of the maximum resistance to permeation and the rate-limiting barrier to oxygen permeation in 1-palmitoyl,2-oleoylphosphatidylcholine (POPC) and POPC/cholesterol bilayers at 25 and 35 °C. The current simulations show a spike of resistance to permeation in the headgroup region that was not detected by EPR but was predicted in early theoretical work by Diamond and Katz. Published experimental nuclear magnetic resonance (NMR) oxygen measurements provide key validation of the MD models and indicate that the positions and relative magnitudes of the phosphatidylcholine resistance peaks are accurate. Consideration of the headgroup-region resistances predicts bilayer permeability coefficients lower than that estimated in EPR studies, giving permeabilities lower than the permeability of unstirred water layers of the same thickness. Here, the permeability of POPC at 35 °C is estimated to be 13 cm/s, compared to 10 cm/s for POPC/cholesterol and 118 cm/s for simulation water layers of similar thickness. The value for POPC is 12 times lower than that estimated from EPR measurements, while the value for POPC/cholesterol is 5 times lower. These findings underscore the value of atomic resolution models for guiding the interpretation of experimental probe-based measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. A.M. Galea, A.J. Brown, Special relationship between sterols and oxygen: Were sterols an adaptation to aerobic life? Free Radic. Biol. Med. 47, 880–889 (2009)

    Article  Google Scholar 

  2. K. Bloch, The biological synthesis of cholesterol. Vitam. Horm. 15, 119–150 (1957)

    Article  Google Scholar 

  3. B. Konrad, Evolutionary perfection of a small molecule, in Blondes Venetian Paint. Nine-Banded Armadillo, Other Essays Biochemistry. (Yale University Press, New Haven, 1994), pp. 14–32

  4. S.D. Varma, D. Chand, Y.R. Sharma, J.F. Kuck, R.D. Richards, Oxidative stress on lens and cataract formation: role of light and oxygen. Curr. Eye Res. 3, 35–58 (1984)

    Article  Google Scholar 

  5. N.M. Holekamp, Y.-B. Shui, D.C. Beebe, Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am. J. Ophthalmol. 139, 302–310 (2005)

    Article  Google Scholar 

  6. B.M. Palmquist, B. Philipson, P.O. Barr, Nuclear cataract and myopia during hyperbaric oxygen therapy. Br. J. Ophthalmol. 68, 113–117 (1984)

    Article  Google Scholar 

  7. D. Dumas, V. Latger, M.L. Viriot, W. Blondel, J.F. Stoltz, Membrane fluidity and oxygen diffusion in cholesterol-enriched endothelial cells. Clin. Hemorheol. Microcirc. 21, 255–261 (1999)

    Google Scholar 

  8. J.R. Krycer, I. Kristiana, A.J. Brown, Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3. PLoS One 4, e8496 (2009)

    Article  ADS  Google Scholar 

  9. B. Smith, H. Land, Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep. 2, 580–590 (2012)

    Article  Google Scholar 

  10. V. Ribas, C. García-Ruiz, J.C. Fernández-Checa, Mitochondria, cholesterol and cancer cell metabolism. Clin. Transl. Med. 5, 22 (2016)

    Article  Google Scholar 

  11. J. Widomska, M. Raguz, W.K. Subczynski, Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim. Biophys. Acta 1768, 2635–2645 (2007)

    Article  Google Scholar 

  12. R.J. Dotson, C.R. Smith, K. Bueche, G. Angles, S.C. Pias, Influence of cholesterol on the oxygen permeability of membranes: insight from atomistic simulations. Biophys. J. 112, 2336–2347 (2017)

    Article  ADS  Google Scholar 

  13. N. Khan, J. Shen, T.Y. Chang, C.C. Chang, P.C. Fung, O. Grinberg, E. Demidenko, H. Swartz, Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42, 23–29 (2003)

    Article  Google Scholar 

  14. E. Poon, A.L. Harris, M. Ashcroft, Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med. 11, e26 (2009)

    Article  Google Scholar 

  15. G.L. Semenza, Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis and metastasis. Oncogene 32, 4057–4063 (2013)

    Article  Google Scholar 

  16. K. Ruan, G. Song, G. Ouyang, Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 107, 1053–1062 (2009)

    Article  Google Scholar 

  17. R. Battino, T.R. Rettich, T. Tominaga, The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 12, 163–178 (1983)

    Article  ADS  Google Scholar 

  18. B. Olmeda, L. Villén, A. Cruz, G. Orellana, J. Perez-Gil, Pulmonary surfactant layers accelerate O2 diffusion through the air–water interface. Biochim. Biophys. Acta Biomembr. 1798, 1281–1284 (2010)

    Article  Google Scholar 

  19. B. Olmeda, B. García-Álvarez, M.J. Gómez, M. Martínez-Calle, A. Cruz, J. Pérez-Gil, A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J. 29, 4236–4247 (2015)

    Article  Google Scholar 

  20. H. Buchwald, T.J. O’Dea, H.J. Menchaca, V.N. Michalek, T.D. Rohde, Effect of plasma cholesterol on red blood cell oxygen transport. Clin. Exp. Pharmacol. Physiol. 27, 951–955 (2000)

    Article  Google Scholar 

  21. H.J. Menchaca, V.N. Michalek, T.D. Rohde, T.J. O’Dea, H. Buchwald, Decreased blood oxygen diffusion in hypercholesterolemia. Surgery 124, 692–698 (1998)

    Article  Google Scholar 

  22. R.J. Dotson, S.C. Pias, Reduced oxygen permeability upon protein incorporation within phospholipid bilayers. Adv. Exp. Med. Biol. 1072, 405–411 (2018)

    Article  Google Scholar 

  23. J. Widomska, M. Raguz, J. Dillon, E.R. Gaillard, W.K. Subczynski, Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochim. Biophys. Acta 1768, 1454–1465 (2007)

    Article  Google Scholar 

  24. C.L. Wennberg, D. van der Spoel, J.S. Hub, Large influence of cholesterol on solute partitioning into lipid membranes. J. Am. Chem. Soc. 134, 5351–5361 (2012)

    Article  Google Scholar 

  25. F. Zocher, D. van der Spoel, P. Pohl, J.S. Hub, Local partition coefficients govern solute permeability of cholesterol-containing membranes. Biophys. J. 105, 2760–2770 (2013)

    Article  ADS  Google Scholar 

  26. S.C. Pias, How does oxygen diffuse from capillaries to tissue mitochondria? Barriers and pathways. J. Physiol. 599, 1769–1782 (2021)

    Article  Google Scholar 

  27. O.Y. Grinberg, P.E. James, H.M. Swartz, Are there significant gradients of pO2 in cells? Adv. Exp. Med. Biol. 454, 415–423 (1998)

    Article  Google Scholar 

  28. S. Fischkoff, J.M. Vanderkooi, Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J. Gen. Physiol. 65, 663–676 (1975)

    Article  Google Scholar 

  29. D. Dumas, S. Muller, F. Gouin, F. Baros, M.L. Viriot, J.F. Stoltz, Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane. Arch. Biochem. Biophys. 341, 34–39 (1997)

    Article  Google Scholar 

  30. M. Möller, H. Botti, C. Batthyany, H. Rubbo, R. Radi, A. Denicola, Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J. Biol. Chem. 280, 8850–8854 (2005)

    Article  Google Scholar 

  31. M.N. Möller, A. Denicola, Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic. Biol. Med. 128, 137–143 (2018)

    Article  Google Scholar 

  32. M.S. Al-Abdul-Wahid, F. Evanics, R.S. Prosser, Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles. Biochemistry 50, 3975–3983 (2011)

    Article  Google Scholar 

  33. M.S. Al-Abdul-Wahid, C.H. Yu, I. Batruch, F. Evanics, R. Pomes, R.S. Prosser, A combined NMR and molecular dynamics study of the transmembrane solubility and diffusion rate profile of dioxygen in lipid bilayers. Biochemistry 45, 10719–10728 (2006)

    Article  Google Scholar 

  34. A. Kusumi, W.K. Subczynski, J.S. Hyde, Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc. Natl. Acad. Sci. U. S. A. 79, 1854–1858 (1982)

    Article  ADS  Google Scholar 

  35. W.K. Subczynski, J.S. Hyde, Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys. J. 45, 743–748 (1984)

    Article  Google Scholar 

  36. W.K. Subczynski, J.S. Hyde, Concentration of oxygen in lipid bilayers using a spin-label method. Biophys. J. 41, 283–286 (1983)

    Article  Google Scholar 

  37. C.S. Lai, L.E. Hopwood, J.S. Hyde, S. Lukiewicz, ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. U. S. A. 79, 1166–1170 (1982)

    Article  ADS  Google Scholar 

  38. J.J. Yin, J.B. Feix, J.S. Hyde, Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance. Biophys. J. 58, 713–720 (1990)

    Article  ADS  Google Scholar 

  39. I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems (Benjamin-Cummings Pub Co, San Francisco, 1986)

    Google Scholar 

  40. R.S. Prosser, F. Evanics, J.L. Kitevski, M.S. Al-Abdul-Wahid, Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins †, ‡. Biochemistry 45, 8453–8465 (2006)

    Article  Google Scholar 

  41. R.S. Prosser, P.A. Luchette, P.W. Westerman, Using O2 to probe membrane immersion depth by 19F NMR. Proc. Natl. Acad. Sci. U. S. A. 97, 9967–9971 (2000)

    Article  ADS  Google Scholar 

  42. W.K. Subczynski, J.S. Hyde, A. Kusumi, Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. 86, 4474–4478 (1989)

    Article  ADS  Google Scholar 

  43. W.K. Subczynski, J.S. Hyde, A. Kusumi, Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30, 8578–8590 (1991)

    Article  Google Scholar 

  44. E. Plesnar, R. Szczelina, W.K. Subczynski, M. Pasenkiewicz-Gierula, Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Biochim. Biophys. Acta Biomembr. 2018, 434–441 (1860)

    Google Scholar 

  45. K. Kawasaki, J.J. Yin, W.K. Subczynski, J.S. Hyde, A. Kusumi, Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys. J. 80, 738–748 (2001)

    Article  Google Scholar 

  46. L. Mainali, M. Pasenkiewicz-Gierula, W.K. Subczynski, Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in membranes made of the major phospholipids of human eye lens fiber cell plasma membranes. Curr. Eye Res. 45, 162–172 (2020)

    Article  Google Scholar 

  47. W.K. Subczynski, J. Widomska, J.B. Feix, Physical properties of lipid bilayers from EPR spin labeling and their influence on chemical reactions in a membrane environment. Free Radic. Biol. Med. 46, 707–718 (2009)

    Article  Google Scholar 

  48. G. Angles, R. Dotson, K. Bueche, S.C. Pias, Predicted decrease in membrane oxygen permeability with addition of cholesterol. Adv. Exp. Med. Biol. 977, 9–14 (2017)

    Article  Google Scholar 

  49. A. Kyrychenko, A.S. Ladokhin, Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer. J. Phys. Chem. B 117, 5875–5885 (2013)

    Article  Google Scholar 

  50. R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs 2 Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013)

    Article  Google Scholar 

  51. D.A. Case, V. Babin, J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, T.A. Darden, R.E. Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K.M. Merz, F. Paesani, D.R Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C.L. Simmerling, W. Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, P.A. Kollman (2014) AMBER 14, University of California, San Francisco

  52. S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008)

    Article  Google Scholar 

  53. B.R. Brooks, C.L. Brooks 3rd., A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera et al., CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  Google Scholar 

  54. J. Lee, X. Cheng, J.M. Swails, M.S. Yeom, P.K. Eastman, J.A. Lemkul, S. Wei, J. Buckner, J.C. Jeong, Y. Qi, S. Jo, V.S. Pande, D.A. Case, C.L. Brooks, A.D. MacKerell, J.B. Klauda, W. Im, CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016)

    Article  Google Scholar 

  55. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  56. C.J. Dickson, B.D. Madej, Å.A. Skjevik, R.M. Betz, K. Teigen, I.R. Gould, R.C. Walker, Lipid14: the Amber lipid force field. J. Chem. Theory Comput. 10, 865–879 (2014)

    Article  Google Scholar 

  57. B.D. Madej, I.R. Gould, R.C. Walker, A parameterization of cholesterol for mixed lipid bilayer simulation within the Amber Lipid14 force field. J. Phys. Chem. B 119, 12424–12435 (2015)

    Article  Google Scholar 

  58. R.C. Weast (ed.), CRC Handbook of Chemistry and Physics, 67th edn. (The Chemical Rubber Co., Cleveland, 1986)

    Google Scholar 

  59. G. Herzberg, J.W.T. Spinks, Molecular Spectra and Molecular Structure: Diatomic Molecules. Van Nostrand, Reinhold, New York (1950)

  60. A.A. Skjevik, B.D. Madej, R.C. Walker, K. Teigen, LIPID11: a modular framework for lipid simulations using Amber. J. Phys. Chem. B 116, 11124–11136 (2012)

    Article  Google Scholar 

  61. R.J. Dotson, R. Shea, E. Byrd, S.C. Pias, Optimization of an additive molecular oxygen model for membrane simulation studies. (in preparation)

  62. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N∙log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)

    Article  ADS  Google Scholar 

  63. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  ADS  Google Scholar 

  64. M.F. Crowley, T.O.M.A. Darden, T.E.C. Iii, D.W.D. Ii, Adventures in improving the scaling and accuracy of a parallel molecular dynamics program. J. Supercomput. 11, 255–278 (1997)

    Article  Google Scholar 

  65. S.-J. Marrink, H.J.C. Berendsen, Simulation of water transport through a lipid membrane. J. Phys. Chem. 98, 4155–4168 (1994)

    Article  Google Scholar 

  66. C. Chipot, J. Comer, Subdiffusion in membrane permeation of small molecules. Sci. Rep. 6, 1–14 (2016)

    Article  Google Scholar 

  67. J.M. Diamond, Y. Katz, Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membr. Biol. 17, 121–154 (1974)

    Article  Google Scholar 

  68. G. Parisio, M. Stocchero, A. Ferrarini, Passive membrane permeability: beyond the standard solubility-diffusion model. J. Chem. Theory Comput. 9, 5236–5246 (2013)

    Article  Google Scholar 

  69. W.K. Subczynski, H.M. Swartz, EPR oximetry in biological and model samples. In: S.R. Eaton, G.R. Eaton, L.J. Berliner (eds) Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology. Biological Magnetic Resonance, vol 23. Springer, Boston, MA. https://doi.org/10.1007/0-387-26741-7_10

  70. C.A. Popp, J.S. Hyde, Effects of oxygen on EPR spectra of nitroxide spin-label probes of model membranes. J. Magn. Reson. 43, 249–258 (1981)

    ADS  Google Scholar 

  71. W. Subczynski, J. Hyde, The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method. Biochim. Biophys. Acta BBA 643, 283–291 (1981)

    Article  Google Scholar 

  72. D.A. Windrem, W.Z. Plachy, The diffusion-solubility of oxygen in lipid bilayers. Biochim. Biophys. Acta 600, 655–665 (1980)

    Article  Google Scholar 

  73. W.K. Subczynski, M. Pasenkiewicz-Gierula, R.N. McElhaney, J.S. Hyde, A. Kusumi, Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues. Biochemistry 42, 3939–3948 (2003)

    Article  Google Scholar 

  74. K. Gaalswyk, E. Awoonor-Williams, C.N. Rowley, Generalized langevin methods for calculating transmembrane diffusivity. J. Chem. Theory Comput. 12, 5609–5619 (2016)

    Article  Google Scholar 

  75. R.J. Dotson, E. McClenahan, S.C. Pias, Updated evaluation of cholesterol’s influence on membrane oxygen permeability. Adv. Exp. Med. Biol. 1269, 23–30 (2021)

    Article  Google Scholar 

  76. J. Henriksen, A.C. Rowat, E. Brief, Y.W. Hsueh, J.L. Thewalt, M.J. Zuckermann, J.H. Ipsen, Universal behavior of membranes with sterols. Biophys. J. 90, 1639–1649 (2006)

    Article  ADS  Google Scholar 

  77. F.A. Nezil, M. Bloom, Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys. J. 61, 1176–1183 (1992)

    Article  ADS  Google Scholar 

  78. N. Kučerka, M.-P. Nieh, J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011, 2761–2771 (1808)

    Google Scholar 

  79. J.C. Mathai, S. Tristram-Nagle, J.F. Nagle, M.L. Zeidel, Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol. 131, 69–76 (2008)

    Article  Google Scholar 

  80. N. Kučerka, Y. Liu, N. Chu, H.I. Petrache, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88, 2626–2637 (2005)

    Article  Google Scholar 

  81. N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193–202 (2005)

    Article  Google Scholar 

  82. J.F. Nagle, J.C. Mathai, M.L. Zeidel, S. Tristram-Nagle, Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 131, 77–85 (2008)

    Article  Google Scholar 

  83. A. Ghysels, R.M. Venable, R.W. Pastor, G. Hummer, Position-dependent diffusion tensors in anisotropic media from simulation: oxygen transport in and through membranes. J. Chem. Theory Comput. 13, 2962–2976 (2017)

    Article  Google Scholar 

  84. W.K. Subczynski, J. Widomska, L. Mainali, Factors determining the oxygen permeability of biological membranes: oxygen transport across eye lens fiber-cell plasma membranes. Adv. Exp. Med. Biol. 977, 27–34 (2017)

    Article  Google Scholar 

  85. M.N. Möller, Q. Li, M. Chinnaraj, H.C. Cheung, J.R. Lancaster, A. Denicola, Solubility and diffusion of oxygen in phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2016, 2923–2930 (1858)

    Google Scholar 

  86. S.J. Marrink, H.J.C. Berendsen, Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J. Phys. Chem. 100, 16729–16738 (1996)

    Article  Google Scholar 

  87. S.J. Marrink, R.M. Sok, H.J.C. Berendsen, Free volume properties of a simulated lipid membrane. J. Chem. Phys. 104, 9090–9099 (1996)

    Article  ADS  Google Scholar 

  88. S.H.P. Oliveira, F.A.N. Ferraz, R.V. Honorato, J. Xavier-Neto, T.J.P. Sobreira, P.S.L. de Oliveira, KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinform. 15(1–8), 197 (2014)

    Article  Google Scholar 

  89. J.S. Hub, F.K. Winkler, M. Merrick, B.L. de Groot, Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes. J. Am. Chem. Soc. 132, 13251–13263 (2010)

    Article  Google Scholar 

  90. A. Krämer, A. Ghysels, E. Wang, R.M. Venable, J.B. Klauda, B.R. Brooks, R.W. Pastor, Membrane permeability of small molecules from unbiased molecular dynamics simulations. J. Chem. Phys. 153, 124107 (2020)

    Article  ADS  Google Scholar 

  91. M.R. Elkins, A. Bandara, G.A. Pantelopulos, J.E. Straub, M. Hong, Direct observation of cholesterol dimers and tetramers in lipid bilayers. J. Phys. Chem. B 125, 1825–1837 (2021)

    Article  Google Scholar 

  92. A. Ghysels, A. Krämer, R.M. Venable, W.E. Teague, E. Lyman, K. Gawrisch, R.W. Pastor, Permeability of membranes in the liquid ordered and liquid disordered phases. Nat. Commun. 10, 5616 (2019)

    Article  ADS  Google Scholar 

  93. C. Hannesschlaeger, A. Horner, P. Pohl, Intrinsic membrane permeability to small molecules. Chem. Rev. 119, 5922–5953 (2019)

    Article  Google Scholar 

  94. O. De Vos, R.M. Venable, T. Van Hecke, G. Hummer, R.W. Pastor, A. Ghysels, Membrane permeability: characteristic times and lengths for oxygen and a simulation-based test of the inhomogeneous solubility-diffusion model. J. Chem. Theory Comput. 14, 3811–3824 (2018)

    Article  Google Scholar 

  95. P. Han, D.M. Bartels, Temperature dependence of oxygen diffusion in H2O and D2O. J. Phys. Chem. 100, 5597–5602 (1996)

    Article  Google Scholar 

  96. L. Yang, J.T. Kindt, Line tension assists membrane permeation at the transition temperature in mixed-phase lipid bilayers. J. Phys. Chem. B 120, 11740–11750 (2016)

    Article  Google Scholar 

  97. Y. Wang, E. Tajkhorshid, Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78, 661–670 (2010)

    Google Scholar 

  98. G. Angles, R.J. Dotson, S.C. Pias, Atomistic simulations modify interpretation of spin-label oximetry data. Part, 2: Tempocholine membrane “headgroup” probe measures oxygen in hydrophobic regions. (in preparation)

Download references

Acknowledgements

The authors wish to honor Harold Swartz, who has inspired, critiqued, and brought insight to our work over the years. We also thank Talysa Ogas, who assisted with editing the manuscript at an early stage. Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103451. The research was additionally funded by a gift from the Glendorn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally C. Pias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angles, G., Hail, A., Dotson, R.J. et al. Atomistic Simulations Modify Interpretation of Spin-Label Oximetry Data. Part 1: Intensified Water–Lipid Interfacial Resistances. Appl Magn Reson 52, 1261–1289 (2021). https://doi.org/10.1007/s00723-021-01398-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01398-z

Navigation