Skip to main content
Log in

Synthesis and Structure of Bismuth Complexes [(2-MeO)(5-Cl)C6H3]3Bi, [(2-MeO)(5-Cl)C6H3]3Bi[OC(O)CF2Br]2, and [(2-MeO)(5-Br)C6H3]3Bi[OC(O)C6HF4-2,3,4,5]2

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

In the crystal of [(2-MeO)(5-Cl)C6H3]3Bi (I), obtained from bismuth trichloride and 2-methoxy-5-chlorophenyllithium in ether, bismuth atoms have a trigonal ligand environment. The coordination number of the central atom is 6 (3 + 3), with allowance made for the coordination of the MeO oxygen atom to the metal (the Bi···OMe intramolecular distances are 3.014(6), 3.088(6), and 3.168(6) Å). Treatment of a mixture of I and bromodifluoroacetic acid, or [(2-MeO)(5-Br)C6H3]3Bi and 2,3,4,5-tetrafluorobenzoic acid in ether with tert-butyl hydroperoxide results in the formation of trigonal bipyramidal triarylbismuth dicarboxylates [(2-MeO)(5-Cl)C6H3]3Bi[OC(O)CF2Br]2 (II) and [(2-MeO)(5-Br)C6H3]3Bi[OC(O)C6HF4-2,3,4,5]2 (III), respectively, with carboxyl ligands in the apical positions. In the crystals of II and III, the metal atom is additionally coordinated to the oxygen atoms of the O=C and MeO groups (3.05(16), 3.30(16), and 3.153(5)−3.117(5) Å for II and 3.004(7), 3.230(7), and 3.159(7)−3.199(7) Å for III). The structures of IIII were studied by X-ray diffraction (CIF file CCDC nos. 2044006 (I), 2044005 (II), and 2048153 (III)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Usoltsev, A.N., Adonin, S.A., Novikov, A.S., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 1, p. 23. https://doi.org/10.1134/S107032842001008X

    Article  CAS  Google Scholar 

  2. Kindra, D.R., Peterson, J.K., Ziller, J.W., et al., Organometallics, 2015, vol. 34, p. 395. https://doi.org/10.1021/om5010786

    Article  CAS  Google Scholar 

  3. Casely, I.J., Ziller, J.W., Mincher, B.J., et al., Inorg. Chem., 2011, vol. 50, p. 1513. https://doi.org/10.1021/ic102119y

    Article  CAS  PubMed  Google Scholar 

  4. Urbanova, I., Jambor, R., Ruzicka, A., et al., Dalton Trans., 2014, vol. 43, p. 505. https://doi.org/10.1039/c3dt51733k

    Article  CAS  PubMed  Google Scholar 

  5. Solyntjes, S., Neumann, B., Stammler, H.-G., et al., Eur. J. Inorg. Chem., 2016, p. 3999. https://doi.org/10.1002/ejic.201600539

  6. Soran, A., Breunig, H.J., Lippolis, V., et al., J. Organomet. Chem., 2010, vol. 695, p. 850. https://doi.org/10.1016/j.jorganchem.2010.01.004

    Article  CAS  Google Scholar 

  7. Schulz, A. and Villinger, A., Organometallics, 2011, vol. 30, p. 284. https://doi.org/10.1021/om1009796

    Article  CAS  Google Scholar 

  8. Breunig, H.J., Nema, M.G., Silvestru, C., et al., Z. Anorg. Allg. Chem., 2010, vol. 636, p. 2378. https://doi.org/10.1002/zaac.201000233

    Article  CAS  Google Scholar 

  9. Alcantara, E., Sharma, P., Perez, D., et al., Synth. React. Inorg. Met.-Org., Nano-Met. Chem., 2012, vol. 42, p. 1139. https://doi.org/10.1080/15533174.2012.680162

    Article  CAS  Google Scholar 

  10. Benjamin, S.L., Karagiannidis, L., Levason, W., et al., Organometallics, 2011, vol. 30, p. 895. https://doi.org/10.1021/om1010148

    Article  CAS  Google Scholar 

  11. Lichtenberg, C., Pan, F., Spaniol, T.P., et al., Angew. Chem., Int. Ed., 2012, vol. 51, p. 13011. https://doi.org/10.1002/anie.201206782

    Article  CAS  Google Scholar 

  12. Obata, T., Matsumura, M., Kawahata, M., et al., J. Organomet. Chem., 2016, vol. 807, p. 17. https://doi.org/10.1016/j.jorganchem.2016.02.008

    Article  CAS  Google Scholar 

  13. Sharutin, V.V., Sharutina, O.K., Ermakova, V.A., et al., Russ. J. Inorg. Chem., 2017, vol. 62, no. 8, p. 1043. https://doi.org/10.1134/S0036023617080174

    Article  CAS  Google Scholar 

  14. Chalmers, B.A., Meigh, C.B.E., Nejman, P.S., et al., Inorg. Chem., 2016, vol. 55, p. 7117. https://doi.org/10.1021/acs.inorgchem.6b01079

    Article  CAS  PubMed  Google Scholar 

  15. Tschersich, C., Hoof, S., Frank, N., et al., Inorg. Chem., 2016, vol. 55, p. 1837. https://doi.org/10.1021/acs.inorgchem.5b02740

    Article  CAS  PubMed  Google Scholar 

  16. Wade, C.R., Saber, M.R., and Gabbai, F.P., Heteroat. Chem., 2011, vol. 22, p. 500. https://doi.org/10.1002/hc.20713

    Article  CAS  Google Scholar 

  17. Novikova, E.V., Ivanov, A.V., Egorova, I.V., et al., Russ. J. Coord. Chem., 2019, vol. 45, no. 10, p. 695. https://doi.org/10.1134/S1070328419100038

    Article  CAS  Google Scholar 

  18. Chen, J., Murafuji, T., and Tsunashima, R., Organometallics, 2011, vol. 30, p. 4532. https://doi.org/10.1021/om200228x

    Article  CAS  Google Scholar 

  19. Duffin, R.N., Blair, V.L., Kedzierski, L., et al., Dalton Trans., 2018, vol. 47, p. 971. https://doi.org/10.1039/c7dt04171c

    Article  CAS  PubMed  Google Scholar 

  20. Duffin, R.N., Blair, V.L., Kedzierski, L., et al., J. Inorg. Biochem., 2018, vol. 189, p. 151. https://doi.org/10.1016/j.jinorgbio.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  21. Ong, Y.C., Blair, V.L., Kedzierski, L., et al., Dalton Trans., 2014, vol. 43, p. 12904. https://doi.org/10.1039/c4dt00957f

    Article  CAS  PubMed  Google Scholar 

  22. Ong, Y.C., Blair, V.L., Kedzierski, L., et al., Dalton Trans., 2015, vol. 44, p. 18215. https://doi.org/10.1039/c5dt03335g

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X.-Y., Wu, R.-X., Bi, C.-F., et al., Inorg. Chim. Acta, 2018, vol. 483, p. 129. https://doi.org/10.1016/j.ica.2018.07.027

    Article  CAS  Google Scholar 

  24. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.

  25. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.

  26. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  27. Batsanov, S.S., Russ. J. Inorg. Chem. 1991, vol. 36, p. 1694.

    Google Scholar 

  28. Ermakova, V.A. and Sharutina, O.K., Vestnik YuUrGU. Ser. Khim., 2018, vol. 10, no. 2, p. 41. https://doi.org/10.14529/chem180205

    Article  Google Scholar 

  29. Hassan, A. and Wang, S., Dalton Trans., 1997, no. 12, p. 2009. https://doi.org/10.1039/A700477J

  30. Sharutin, V.V., Sharutina, O.K., and Efremov, A.N., Russ. J. Inorg. Chem., 2019, vol. 64, no. 2, p. 190. https://doi.org/10.1134/S0036023619020189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K. & Efremov, A.N. Synthesis and Structure of Bismuth Complexes [(2-MeO)(5-Cl)C6H3]3Bi, [(2-MeO)(5-Cl)C6H3]3Bi[OC(O)CF2Br]2, and [(2-MeO)(5-Br)C6H3]3Bi[OC(O)C6HF4-2,3,4,5]2. Russ J Coord Chem 47, 626–630 (2021). https://doi.org/10.1134/S1070328421070058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421070058

Keywords:

Navigation