Skip to main content
Log in

Thermodynamic and Electrochemical Studies of Aniline and Phenylhydrazine and Their Derivatives Substituted POCl3-Based Compounds as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The achievement of high corrosion inhibition performances by manipulating the molecular structure of organic substances has gained much attention in recent years. In this paper, POCl3 was synthesized and Cl atoms in phosphoryl chloride (POCl3) were replaced by aniline or phenyl hydrazine and their derivatives; the effect of the substitution on the corrosion inhibition performance for mild steel immersed in 1 M HCl solution was investigated. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV–Vis) spectroscopy were used to determine the molecular structure of the synthesized organic substances. Electrochemical impedance spectroscopy (EIS) and polarization measurements were employed to investigate the corrosion inhibition performance of the organic molecules for the immersed mild steel samples in the acid solution. The obtained results indicated that the inhibition efficiency of the synthesized inhibitors was increased by increasing the molecular size of the organic substances as well as increasing the number of nitrogen and oxygen heteroatoms in the structure of the organic molecules. The maximum amount of inhibition efficiency of the synthesized organic inhibitors in this paper was obtained about 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Merello, R., Botana, F.J., Botella, J., Matres, M.V., and Marcos, M., Corros. Sci., 2003, vol. 45, pp. 909–921.

    Article  CAS  Google Scholar 

  2. Cunat, P.-J., Alloying Elements in Stainless Steel, Euro Inox, 2004, pp. 1–24.

    Google Scholar 

  3. Javidparvar, A.A., Naderi, R., Ramezanzadeh, B., and Bahlakeh, G., J. Ind. Eng. Chem., 2019, vol. 72, pp. 196–213.

    Article  CAS  Google Scholar 

  4. Saji, V.S., Recent Pat. Corros. Sci., 2010, vol. 2, pp. 6–12.

    Article  CAS  Google Scholar 

  5. Javidparvar, A.A., Ramezanzadeh, B., and Ghasemi, E., Inst. Color Sci. Technol., 2015, vol. 10, p. 12.

    Google Scholar 

  6. Javidparvar, A.A., Ramezanzadeh, B., and Ghasemi, E., J. Taiwan Inst. Chem. Eng., 2015, vol. 61, pp. 356–366.

    Article  CAS  Google Scholar 

  7. Dayal, R.K., in Corrosion of Austenitic Stainless Steels, Cambridge: Woodhead Publ., 2002.

    Google Scholar 

  8. Hughes, A.E., Ho, D., Forsyth, M., and Hinton, B.R.W., Corros. Rev., 2007, vol. 25, pp. 591–605.

    Article  CAS  Google Scholar 

  9. Francis, R. and Powell, C., Corrosion and Anti-Corrosives, European Federation of Corrosion, 2012.

    Google Scholar 

  10. Atabaki, F., Jahangiri, Sh., and Pahnavar, Z., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 1161–1172.

    Article  Google Scholar 

  11. Atabaki, F., Bastam, N.N., Hafizi-Atabak, H., Radvar, M., and Jahangiri, Sh., Iran. J. Chem. Chem. Eng., 2020, vol. 39, no. 4, p. 113.

    Google Scholar 

  12. Fink, J., Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, Gulf Professional Publ., 2015, pp. 215–254.

    Google Scholar 

  13. Dariva, C.G. and Galio, A.F., Corrosion Inhibitors - Principles, Mechanisms and Applications, IntechOpen, 2014, pp. 365–379.

    Google Scholar 

  14. Somers, A.E., Hinton, B.R.W., De Bruin-Dickason, C., Deacon, G.B., Junk, P.C., and Forsyth, M., Corros. Sci., 2018, vol. 139, pp. 430–437.

    Article  CAS  Google Scholar 

  15. Palou, R.M., Olivares-Xomelt, O., and Likhanova, N.V., Environmentally friendly corrosion inhibitors, in Developments in Corrosion Protection, Aliofkhazraei, M., Ed., IntechOpen, 2014, pp. 431–465.

    Google Scholar 

  16. Arthur, D.E., Jonathan, A., Ameh, P.O., and Anya, C., Int. J. Ind. Chem., 2013, vol. 4, p. 2.

    Article  Google Scholar 

  17. Wang, L., Qu, M.-Q., Yang, Y.-J., Peng, L., and Ma, S.-M., Int. J. Electrochem. Sci., 2016, vol. 11, pp. 9307–9325.

    Article  CAS  Google Scholar 

  18. Org, W.E., Zhang, C., and Zhao, J., Int. J. Electrochem. Sci., 2017, vol. 12, pp. 9161–9179.

    Google Scholar 

  19. Brycki, B.E., Kowalczyk, H.I., Szulc, A., Kaczerewska, O., and Pakiet, M., Organic corrosion inhibitors, in Corrosion Inhibitors, Principles and Recent Applications, IntechOpen, 2018, pp. 3–30.

  20. Rani, B.E.A. and Basu, B.B.J., Int. J. Corros., 2012, vol. 2012, pp. 1–15.

    Article  Google Scholar 

  21. Ahmed, M.H.O., Al-Amiery, A.A., Al-Majedy, Y.K., Kadhum, A.A.H., Mohamad, A.B., and Gaaz, T.S., Results Phys., 2018, vol. 8, pp. 728–733.

    Article  Google Scholar 

  22. Chai, C., Xu, Y., Li, D., Zhao, X., Xu, Y., Zhang, L., et al., Prog. Org. Coat., 2019, vol. 129, pp. 159–170.

    Article  CAS  Google Scholar 

  23. Jiang, L., Qiang, Y., Lei, Z., Wang, J., Qin, Z., and Xian, B.G., J. Mol. Liq., 2018, vol. 255, pp. 53–63.

    Article  CAS  Google Scholar 

  24. Öztürk, S., Yıldırım, A., Çetin, M., and Tavaslı, M., J. Surfactants Deterg., 2014, vol. 17, pp. 471–481.

    Article  CAS  Google Scholar 

  25. Atabaki, F. and Jahangiri, Sh., J. Appl. Chem., 2017, vol. 11, pp. 67–74.

    Google Scholar 

  26. Moller, G., US Patent 3406013, 1968.

  27. Draeger, A.G. et al., US Patent 3052520, 1962.

  28. Gholivand, K., Pooyan, M., Mohamadpanah, F., Pirastefar, F., Junk, P.C., Wang, J., Ebrahimi Valmoozi, A.A., and Mani-Varnosfaderani, A., Bioorg. Chem., 2019, vol. 86, pp. 482–493.

    Article  CAS  Google Scholar 

  29. Tarahhomi, A. and Van Der Lee, A., J. Coord. Chem., 2018, vol. 8972, pp. 1–26.

    Google Scholar 

  30. Son, Y.R. and Park, S.J., Sci. Rep., 2018, vol. 8, pp. 2–11.

    Article  CAS  Google Scholar 

  31. Zou, S., Li, R., Kobayashi, H., Liu, J., and Fan, J., Chem. Commun., 2013, vol. 49, p. 1906.

    Article  CAS  Google Scholar 

  32. Ozaki, Y., Morisawa, Y., Ikehata, A., and Higashi, N., Appl. Spectrosc. Rev., 2012, vol. 66, pp. 1–25.

    Article  CAS  Google Scholar 

  33. Khaled, K.F., Electrochim. Acta, 2010, vol. 55, pp. 6523–6532.

    Article  CAS  Google Scholar 

  34. Khaled, K.F. and Amin, M.A., J. Appl. Electrochem., 2009, vol. 39, pp. 2553–2568.

    Article  CAS  Google Scholar 

  35. Javidparvar, A.A., Naderi, R., and Ramezanzadeh, B., J. Mol. Liq., 2019, vol. 284, pp. 415–430.

    Article  CAS  Google Scholar 

  36. Asadi, N., Naderi, R., and Mahdavian, M., Prog. Org. Coat., 2019, vol. 132, pp. 29–40.

    Article  CAS  Google Scholar 

  37. Javidparvar, A.A., Ramezanzadeh, B., and Ghasemi, E., Corrosion, 2016, vol. 72, pp. 1–49.

    Article  CAS  Google Scholar 

  38. Javidparvar, A.A., Naderi, R, and Ramezanzadeh, B., Composites, Part B, 2019, vol. 172, pp. 363–375.

    Article  CAS  Google Scholar 

  39. Chaudhry, A.U., Mittal, V., and Mishra, B., Mater. Chem. Phys., 2015, vol. 163, pp. 130–137.

    Article  CAS  Google Scholar 

  40. Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., and Musiani, M., Electrochim. Acta, 2010, vol. 55, pp. 6218–6227.

    Article  CAS  Google Scholar 

  41. Labjar, N., Lebrini, M., Bentiss, F., Chihib, N.E., El Hajjaji, S., and Jama, C., Mater. Chem. Phys., 2010, vol. 119, pp. 330–336.

    Article  CAS  Google Scholar 

  42. Li, X., Wang, Z., Li, Q., Ma, J., and Zhu, M., Chem. Eng. J., 2015, vol. 273, pp. 630–637.

    Article  CAS  Google Scholar 

  43. Touir, R., Belakhmima, R.A., Ebn Touhami, M., Lakhrissi, L., El Fayed, M., Lakhrissi, B., et al., J. Mater. Environ. Sci., 2013, vol. 4, pp. 921–930.

    CAS  Google Scholar 

  44. Lim, S.H., Zeng, K.Y., and He, C.B., Mater. Sci. Eng., A, 2010, vol. 527, pp. 5670–5676.

    Article  CAS  Google Scholar 

  45. Mahdavian, M. and Ashhari, S., Electrochim. Acta, 2010, vol. 55, pp. 1720–1724.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Atabaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fariborz Atabaki, Shahrzad Jahangiri Thermodynamic and Electrochemical Studies of Aniline and Phenylhydrazine and Their Derivatives Substituted POCl3-Based Compounds as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution. Prot Met Phys Chem Surf 57, 820–833 (2021). https://doi.org/10.1134/S2070205121040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121040055

Keywords:

Navigation