Skip to main content
Log in

On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In the present paper, we prove time decay estimates of solutions in weighted Sobolev spaces to the second order evolution equation with fractional Laplacian and damping for data in Besov spaces. Our estimates generalize the estimates obtained in the previous studies (Karch in Stud Math 143:175–197, 2000; Ikeda et al. in Nonlinear Differ. Equ. Appl. 24:10, 2017). The second aim of this article is to apply these estimates to prove small data global well-posedness for the Cauchy problem of the equation with power nonlinearities. Especially, the estimates obtained in this paper enable us to treat more general conditions on the nonlinearities and the spatial dimension than the results in the papers (Chen et al. in Electron. J. Differ. Equ. 2015:1–14, 2015; Ikeda et al. in Nonlinear Differ. Equ. Appl. 24:10, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin/Heiderberg/New York (1976)

    Book  Google Scholar 

  2. Charão, R.C., da Luz, C.R., Ikehata, R.: Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space. J. Math. Anal. Appl. 408, 247–255 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Fan, D., Zhang, C.: Space–time estimates on damped fractional wave equation. Abstr. Appl. Anal. 2014, Article ID 428909 (2014)

  4. Chen, W., Dao, T.A.: On the Cauchy problem for semilinear regularity-loss-type -evolution models with memory term. Nonlinear Anal. Real World Appl. 59, 103265 (2021)

  5. Chen, J., Fan, D., Zhang, C.: Estimates for damped fractional wave equations and applications. Electron. J. Differ. Equ. 2015, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chill, R., Haraux, A.: An optimal estimate for the difference of solutions of two abstract evolution equations. J. Differ. Equ. 193, 385–395 (2003)

    Article  MathSciNet  Google Scholar 

  7. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  8. da Luz, C.R., Ikehata, R., Charão, R.C.: Asymptotic behavior for abstract evolution differential equations of second order. J. Differ. Equ. 259, 5017–5039 (2015)

    Article  MathSciNet  Google Scholar 

  9. D’Abbicco, M., Ebert, M.R.: An application of \(L^p-L^q\) decay estimates to the semi-linear wave equation with parabolic-like structural damping. Nonlinear Anal. 99, 16–34 (2014)

  10. D’Abbicco, M., Ebert, M.R.: Diffusion phenomena for the wave equation with structural damping in the \(L^p-L^q\) framework. J. Differ. Equ. 256, 2307–2336 (2014)

  11. D’Abbicco, M., Ebert, M.R.: A classification of structural dissipations for evolution operators. Math. Methods Appl. Sci. 39, 2558–2582 (2016)

  12. D’Abbicco, M., Reissig, M.: Semilinear structural damped waves. Math. Methods Appl. Sci. 37, 1570–1592 (2014)

  13. Dao, T.A., Reissig, M.: An application of \(L^1\) estimates for oscillating integrals to parabolic like semi-linear structurally damped -evolution models. J. Math. Anal. Appl. 476, 426–463 (2019)

    Article  MathSciNet  Google Scholar 

  14. Dao, T.A., Reissig, M.: \(L^1\) estimates for oscillating integrals and their applications to semi-linear models with -evolution like structural damping. Discrete Contin. Dyn. Syst. 39, 5431–5463 (2019)

    Article  MathSciNet  Google Scholar 

  15. Duong, P.T., Reissig, M.: The External Damping Cauchy Problems with General Powers of the Laplacian. Trends Math. Res. Perspect. Springer, Birkhäuser/Cham (2017)

    Google Scholar 

  16. Fang, D., Lu, X., Reissig, M.: High-order energy decay for structural damped systems in the electromagnetical field. Chin. Ann. Math. Ser. B 31, 237–246 (2010)

    Article  MathSciNet  Google Scholar 

  17. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u + u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

    Google Scholar 

  18. Fujiwara, K.: Remark on the chain rule of fractional derivative in the Sobolev framework. Preprint, arXiv:2104.05092

  19. Ginibre, J., Ozawa, T., Velo, G.: On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Phys. Théor. 60(2), 211–239 (1994)

  20. Goldstein, S.: On diffusion by discontinuous movements and the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    Article  MathSciNet  Google Scholar 

  21. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations. Harmonic analysis and nonlinear partial differential equations. RIMS Kokyuroku Bessatsu B26, 159–175 (2011)

    MATH  Google Scholar 

  22. Hayashi, N., Kaikina, E.I., Naumkin, P.I.: Damped wave equation with super critical nonlinearities. Diff. Integral Equ. 17, 637–652 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Hosono, T., Ogawa, T.: Large time behavior and \(L^p\)-\(L^q\) estimate of solutions of 2-dimensional nonlinear damped wave equations. J. Differ. Equ. 203, 82–118 (2004)

    Article  Google Scholar 

  24. Ikeda, M., Inui, T., Wakasugi, Y.: The Cauchy problem for the nonlinear damped wave equation with slowly decaying date. Nonlinear Differ. Equ. Appl. 24, 10 (2017)

    Article  Google Scholar 

  25. Ikeda, M., Inui, T., Okamoto, M., Wakasugi, Y.: \(L^p-L^q\) estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Commun. Pure. Appl. Anal. 18, 1967–2008 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ikehata, R., Natsume, M.: Energy decay estimates for wave equations with a fractional damping. Differ. Integr. Equ. 25, 939–956 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Ikehata, R., Nishihara, K.: Diffusion phenomenon for second order linear evolution equations. Stud. Math. 158, 153–161 (2003)

    Article  MathSciNet  Google Scholar 

  28. Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254, 3352–3368 (2013)

    Article  MathSciNet  Google Scholar 

  29. Kac, M.: A stochastic model related to the telegrapher’s equation. J. Math. 4, 497–509 (1974)

  30. Kainane, A., Reissig, M.: Semi-linear fractional -evolution equations with mass or power non-linearity. NoDEA Nonlinear Differ. Equ. Appl. 25, Art. 42 (2018)

  31. Kainane, M., Reissig, M.: Qualitative properties of solution to structurally damped -evolution models with time increasing coefficient in the dissipation. Adv. Differ. Equ. 20, 433–462 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Karch, G.: Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Stud. Math. 143, 175–197 (2000)

    Article  MathSciNet  Google Scholar 

  33. Li, T.-T., Zhou, Y.: Breakdown of solutions to \(\Box u+u_t=|u|^{1+\alpha }\). Discrete Contin. Dyn. Syst 1, 503–520 (1995)

    Article  Google Scholar 

  34. Lu, X., Reissig, M.: Rates of decay for structural damped models with decreasing in time coefficients. Int. J. Dyn. Syst. Diff. Equ. 2, 21–55 (2009)

  35. Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res. Inst. Math. Sci. 12, 169–189 (1976)

    Article  MathSciNet  Google Scholar 

  36. Nakamura, M., Ozawa, T.: The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space. Ann. Inst. H. Poincaré Phys. Théor. 71, 199–215 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Narazaki, T.: \(L^p\)-\(L^q\) estimates for damped wave equations and their applications to semi-linear problem. J. Math. Soc. Jpn. 56, 585–626 (2004)

    Article  MathSciNet  Google Scholar 

  38. Nishihara, K.: \(L^p-L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244, 631–649 (2003)

    Article  MathSciNet  Google Scholar 

  39. Pham, D.T., Kainane, M., Reissig, M.: Global existence for semi-linear structurally damped -evolution models. J. Math. Anal. Appl. 431, 569–596 (2015)

    Article  MathSciNet  Google Scholar 

  40. Radu, P., Todorova, G., Yordanov, B.: Diffusion phenomenon in Hilbert spaces and applications. J. Differ. Equ. 250, 4200–4218 (2011)

    Article  MathSciNet  Google Scholar 

  41. Shibata, Y., Shimizu, S.: A decay property of the Fourier transform and its application to the Stokes problem. J. Math. Fluid Mech. 3, 213–320 (2001)

    Article  MathSciNet  Google Scholar 

  42. Sobajima, M.: Global existence of solutions to semilinear damped wave equation with slowly decaying initial data in exterior domain. Diff. Int. Equ. 32, 615–638 (2019)

  43. Takeda, H.: Global existence of solutions for higher order nonlinear damped wave equations. Discrete Contin. Dyn. Syst. Suppl. 1358–1367 (2011)

  44. Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Diff. Equ. 174, 464–489 (2001)

    Article  MathSciNet  Google Scholar 

  45. Vázquez, J.L.: Asymptotic behaviour for the fractional heat equation in the Euclidean space. Complex Var. Ellip. Equ. 63, 1216–1231 (2018)

    Article  MathSciNet  Google Scholar 

  46. Wirth, J.: Wave equations with time-dependent dissipation. II. Effective dissipation. J. Diff. Equ. 232, 74–103 (2007)

  47. Wirth, J.: Wave equations with time-dependent dissipation. I. Non-effective dissipation. J. Diff. Equ. 222, 487–514 (2006)

  48. Zhang, Q.S.: A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Sér. I Math. 333, 109–114 (2001)

Download references

Acknowledgements

The authors are grateful to the referee for careful reading and helpful comments. The first author is supported by Grants-in-Aid for JSPS Fellows 19J00334 and Early-Career Scientists 20K14337. The second author is supported by JST CREST Grant Number JPMJCR1913, Japan. The second and third authors have been partially supported by the Grant-in-Aid for Scientific Research (B) (No. 18H01132) and Young Scientists Research (No. 19K14581), (No. JP16K17625) Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Fujiwara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of a nonlinear estimate

Lemma 8.1

Let \(z=(z_j)_{j=-1}^1, w=(w_j)_{j=-1}^1 \subset \mathbb R\). For any real sequence \((a_j)_{j=-1}^1\), let \(\Delta ^{(2)}(a) = a_{1}+a_{-1} - 2 a_{0}\). Then

$$\begin{aligned}&| \Delta ^{(2)}(\mathcal M (z)) - \Delta ^{(2)}(\mathcal M (w))|\\&\quad \le C \max _j |z_j|^{\rho _0} | \Delta ^{(2)} (z-w)|\\&\quad \quad + C \max _j (|z_j|+|w_j|)^{(\rho _0-2)_+} \max _j |z_j-w_j|^{\min (\rho _0-1,1)} | \Delta ^{(2)} (w)|\\&\quad \quad + C \max _j |z_j|^{(\rho _0-2)_+} (|z_1-z_0| + |z_0 - z_{-1}|)^{\min (\rho _0-1,1)} |z_0 - w_0 - z_{-1} + w_{-1}|\\&\quad \quad + C \max _j (|z_j|+|w_j|)^{(\rho _0-2)_+} |w_0 - w_{-1}|\\&\quad \quad \cdot \min ( (|z_1-z_0| + |z_0 - z_{-1}| + |w_1-w_0| + |w_0 - w_{-1}|), \max _j|z_j - w_j| )^{\min (\rho _0-1,1)} \end{aligned}$$

with \(\mathcal M\) of Lemma 6.3.

Proof

Let

$$\begin{aligned} z_\theta = {\left\{ \begin{array}{ll} \theta z_1 + (1-\theta ) z_0 &{}\mathrm {if} \quad \theta \in [0,1],\\ |\theta | z_{-1} + (1-|\theta |) z_0 &{}\mathrm {if} \quad \theta \in [-1,0]. \end{array}\right. } \end{aligned}$$

Then

$$\begin{aligned}&\Delta ^{(2)}(\mathcal M(z))\\&\quad = \int _0^1 \mathcal M' (z_\theta ) d \theta (z_1-z_0) - \int _{-1}^0 \mathcal M' (z_\theta ) d \theta (z_0-z_{-1})\\&\quad = \int _0^1 \mathcal M' (z_\theta ) d \theta \Delta ^{(2)}(z) + \int _0^{1} (\mathcal M'(z_\theta ) - \mathcal M' (z_{-\theta })) d \theta (z_{0}- z_{-1}). \end{aligned}$$

Therefore

$$\begin{aligned}&\Delta ^{(2)}(\mathcal M(z) - \mathcal M(w))\\&\quad = \int _0^1 \mathcal M' (z_\theta ) d \theta \Delta ^{(2)}(z-w) + \int _0^1 (\mathcal M' (z_\theta ) - \mathcal M'(w_\theta )) d \theta \Delta ^{(2)}(w)\\&\quad \quad + \int _0^{1} (\mathcal M'(z_\theta ) - \mathcal M' (z_{-\theta })) d \theta (z_{0} - w_0 - z_{-1} + w_{-1})\\&\quad \quad + \int _0^{1} (\mathcal M'(z_\theta ) - \mathcal M' (z_{-\theta }) - \mathcal M'(w_\theta ) + \mathcal M' (w_{-\theta }) ) d \theta (w_0 - w_{-1}). \end{aligned}$$

Since \(z_\theta - z_{-\theta } = \theta (z_1 - z_{-1})\), the assertion is obtained. \(\square \)

Proof of Lemma 4.2

Proof of Lemma 4.2

It is sufficient for us to show

$$\begin{aligned} \Vert \phi _j *f \sum _{k \le j-2} \phi _k *g \Vert _{L^{p_0}}&\le C \Vert \phi _j *f \Vert _{L^{p_1}} \Vert g \Vert _{L^{p_2}}, \end{aligned}$$
(9.1)
$$\begin{aligned} \bigg \Vert 2^{sj} \Vert \sum _{k \ge 0} (\phi _{j+k} *f) (\phi _{j+k} *g) \Vert _{L^{p_0}} \bigg \Vert _{\ell ^2}&\le C \Vert f \Vert _{\dot{B}_{p_1,2}^s} \Vert g \Vert _{L^{p_2}}. \end{aligned}$$
(9.2)

(9.1) follows from the Young estimate and the fact that

$$\begin{aligned} \Vert \sum _{k \le j-2} \phi _k \Vert _{L^1} = \Vert \sum _{k \le 0} \phi _k \Vert _{L^1} \end{aligned}$$

holds for any \(j \in \mathbb Z\). (9.2) also holds because we have

$$\begin{aligned} \bigg \Vert 2^{sj} \Vert \sum _{k \ge 0} (\phi _{j+k} *f) (\phi _{j+k} *g) \Vert _{L^{p_0}} \bigg \Vert _{\ell _j^2}&\le \Vert g \Vert _{L^{p_2}} \sum _{k \ge 0} 2^{-sk} \Vert 2^{s(j+k)} \Vert \phi _{j+k} *f \Vert _{L^{p_1}} \Vert _{\ell _j^2}\\&\le C \Vert g \Vert _{L^{p_2}} \Vert f \Vert _{\dot{B}_{p_1,2}^s}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, K., Ikeda, M. & Wakasugi, Y. On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping. Nonlinear Differ. Equ. Appl. 28, 63 (2021). https://doi.org/10.1007/s00030-021-00723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00723-6

Keywords

Mathematics Subject Classification

Navigation