Skip to main content
Log in

Investigation of the Microstructure and Mechanical Characteristics of Lattice Structures Produced by Laser Powder Bed Fusion Method

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study includes experimental research conducted to produce lattice structures and to examine their mechanical properties by taking advantage of the design freedom provided by additive manufacturing. Much of the existing literature involves mainly process parameters on mechanical behaviors. Thus, more lattice geometry studies are needed. In this study, different lattice structures designed according to the unit cell types selected through the SpaceClaim program were produced using AlSi10Mg powder material with the laser powder bed fusion (LPBF) method the metal additive manufacturing production methods. Cell sizes, Maxwell criterion, relative densities, and mechanical behaviors under semi-static compression force were investigated. It was concluded that with increasing relative density, the strength increased, and the structures with stress-dominating were more resistant than those with bending-dominating strength. It was determined that the mechanical properties of lattices depended on unit cell design and LPBF process parameters. The C1 and C2 coefficients of lattices produced by the LPBF process included in the Gibson and Ashby equation were determined.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, Metals Foams: A Design Guide, 1st edn. (Elsevier Science, Amsterdam, 2000)

    Google Scholar 

  2. J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Russell Township, 2004), pp. 39–46

    Book  Google Scholar 

  3. A.T. Erturk, I. Aydin, Acta Phys. Pol. A 131, 470 (2017)

    Article  Google Scholar 

  4. A.T. Erturk, T. Sahin, Acta Phys. Pol. A 131, 39 (2017)

    Article  Google Scholar 

  5. A.T. Erturk, Acta Phys. Pol. A 129, 592 (2016)

    Article  Google Scholar 

  6. A. Nazir, K.M. Abate, A. Kumar, J.-Y. Jeng, Int. J. Adv. Manuf. Technol. 104, 3489 (2019)

    Article  Google Scholar 

  7. M.G. Rashed, M. Ashraf, R.A.W. Mines, P.J. Hazell, Mater. Design 95, 518 (2016)

    Article  Google Scholar 

  8. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106, 100578 (2019)

    Article  Google Scholar 

  9. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74, 401 (2015)

    Article  Google Scholar 

  10. R.R.J. Sélo, S. Catchpole-Smith, I. Maskery, I. Ashcroft, C. Tuck, Addit. Manuf. 34, 101214 (2020)

    Google Scholar 

  11. L.J. Gibson, Mater. Sci. Eng. A 110, 1 (1989)

    Article  Google Scholar 

  12. C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, W. Zhu, Mater. Sci. Eng. A 628, 238 (2015)

    Article  Google Scholar 

  13. W. Li, F. Sun, P. Wang, H. Fan, D. Fang, Compos. Part A Appl. Sci. Manuf. 81, 313 (2016)

    Article  Google Scholar 

  14. T. Wohlers, T. Gornet, Wohlers report 2014: 3D printing and additive manufacturing state of the industry annual worldwide progress report (Wohlers Associates, Colorado, 2014)

    Google Scholar 

  15. W. Brooks, C. Sutcliffe, W. Cantwell, P. Fox, J. Todd, R. Mines, Rapid design and manufacture of ultralight cellular materials, in Proceedings of the 2005 International Solid Freeform Fabrication Symposium, Austin, 2005, pp. 231–241

  16. H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang, G. Fu, Int. J. Mech. Sci. 175, 105480 (2020)

    Article  Google Scholar 

  17. ASM handbook committee, Properties and selection: Nonferrous alloys and special-purpose materials, vol. 2 (ASM International, Russell Township, 1990)

    Google Scholar 

  18. K. Kempen, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Phys. Proc. 39, 439 (2012)

    Article  Google Scholar 

  19. L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Acta Mater. 61, 1809 (2013)

    Article  Google Scholar 

  20. X.X. Zhang, A. Lutz, H. Andrä, M. Lahres, W.M. Gan, E. Maawad, C. Emmelmann, Int. J. Plast. 139, 102946 (2021)

    Article  Google Scholar 

  21. J. Samei, M. Amirmaleki, M.S. Dastgiri, C. Marinelli, D.E. Green, Mater. Lett. 255, 126512 (2019)

    Article  Google Scholar 

  22. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1–4, 77 (2014)

    Google Scholar 

  23. M. Giovagnoli, G. Silvi, M. Merlin, M.T. Di Giovanni, Mater. Sci. Eng. A 802, 140613 (2021)

    Article  Google Scholar 

  24. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, E. Atzeni, Materials 6, 856 (2013)

    Article  Google Scholar 

  25. M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano,  Rapid Prototyp. J. 20, 449 (2014)

    Article  Google Scholar 

  26. M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M.R. Shankar, J. Manuf. Process. 37, 274 (2019)

    Article  Google Scholar 

  27. A. Suzuki, K. Sekizawa, M. Liu, N. Takata, M. Kobashi, Adv. Eng. Mater. 21, 1900571 (2019)

    Article  Google Scholar 

  28. X. Liu, K. Sekizawa, A. Suzuki, N. Takata, M. Kobashi, T. Yamada, Materials 13, 2902 (2020)

    Article  Google Scholar 

  29. M.E. Bulduk, A.T. Ertürk, M. Coşkun, G. Tarakçı, U. Ergin, The microstructure and mechanical propertıes of porous structures produced from AlSi10Mg by direct metal laser sintering, in Proceedings of the Additive Manufacturing Conference (AMCTURKEY 2019), Istanbul, 17–18 October 2019, pp. 147–150

  30. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)

    Article  Google Scholar 

  31. R. Lumley, Technical data sheets for heat-treated aluminum high-pressure die castings. Die Casting Eng. 2008, 32

  32. Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song, D. Wang, Mater. Design 143, 27 (2018)

    Article  Google Scholar 

  33. V.S. Deshpande, N.A. Fleck, M.F. Ashby, J. Mech. Phys. Solids 49, 1747 (2001)

    Article  Google Scholar 

  34. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, Mater. Design 183, 108137 (2019)

    Article  Google Scholar 

  35. G. Özer, G. Tarakçı, M.S. Yılmaz, Z.C. Öter, Ö. Sürmen, Y. Akça, M. Coşkun, E. Koç, Mater. Corros. 71, 365 (2020)

    Article  Google Scholar 

  36. G.M. Choi, D.G. Kim, B. Im, H.J. Chae, Met. Mater. Int. 25, 946 (2019)

    Article  Google Scholar 

  37. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)

    Article  Google Scholar 

  38. G. Özer, A. Karaaslan, Steel Res. Int. 91, 2000195 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ebubekir KOÇ and his team. The manager of Aluminum Testing Education and Research Center (ALUTEAM) for support for the study. We would like to express our gratitude to M.Sc. Eng. Mert COŞKUN for their assistance in production and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamer Erturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erturk, A.T., Bulduk, M.E., Tarakçi, G. et al. Investigation of the Microstructure and Mechanical Characteristics of Lattice Structures Produced by Laser Powder Bed Fusion Method. Met. Mater. Int. 28, 155–167 (2022). https://doi.org/10.1007/s12540-021-01038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01038-y

Keywords

Navigation