Skip to main content
Log in

Synthesis of SnW3O9/C as novel anode material for lithium-ion battery application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Both SnW3O9 and SnW3O9/C microspheres were successfully synthesized by a simple solvothermal method combined with low-temperature heat treatment. The structures and morphologies of the desired samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Meanwhile, the electrochemical performances for both SnW3O9 and SnW3O9/C were tested as anode materials. Compared with the SnW3O9 electrode, the SnW3O9/C electrode has higher reversible capacity and better cycle performance. At the current density of 1000 mA g−1, it achieved an initial discharge capacity of 1327 mAh g−1 and retained at 873 mAh g−1 after 175 cycles. Electrochemical impedance spectroscopy (EIS) measurements showed that SnW3O9/C electrode owned lower charge transfer resistance and larger Li+ diffusion coefficient than those of pure SnW3O9, which explained why SnW3O9/C behaved outstanding electrochemical performance during discharge/charge process. So, the SnW3O9/C composite is a potential anode material for the lithium-ion battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.M. Guldi, V. Sgobba, Carbon nanostructures for solar energy conversion schemes. Chem. Commun. 47, 606–610 (2011)

    Article  CAS  Google Scholar 

  2. M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018)

    Article  CAS  Google Scholar 

  3. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016)

    Article  Google Scholar 

  4. J. Qin, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5, 10946–10956 (2017)

    Article  CAS  Google Scholar 

  5. M. Zhu, W. Meng, Y. Huang, Y. Huang, C. Zhi, Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl. Mater. Interfaces 6, 18901–18910 (2014)

    Article  CAS  Google Scholar 

  6. L. Li, H. Wang, Z. Xie, C. An, G. Jiang, Y. Wang, 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. J. Alloys Compd. 815, 152337 (2020)

    Article  CAS  Google Scholar 

  7. Y. Ding, L. Hu, D. He, Y. Peng, Y. Niu, Z. Li, X. Zhang, S. Chen, Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem. Eng. J. 380, 122489 (2020)

    Article  CAS  Google Scholar 

  8. J. Zhang, Y. Shi, Y. Ding, W. Zhang, G. Yu, In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium–sulfur battery. Nano lett. 16, 7276–7281 (2016)

    Article  CAS  Google Scholar 

  9. B. Luo, T. Qiu, B. Wang, L. Hao, X. Li, A. Cao, L. Zhi, Freestanding carbon-coated CNT/Sn(O2) coaxial sponges with enhanced lithium-ion storage capability. Nanoscale 7, 20380–20385 (2015)

    Article  CAS  Google Scholar 

  10. X. Wu, S. Yao, Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42, 143–150 (2017)

    Article  CAS  Google Scholar 

  11. X.Y. Xue, B. He, S. Yuan et al., SnO2/WO3 core–shell nanorods and their high reversible capacity as lithium-ion battery anodes. Nanotechnology 22, 395702 (2011)

    Article  Google Scholar 

  12. G. Zhu, W. Que, J. Zhang et al., Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process. Mater. Sci. Eng. B 176, 1448–1455 (2011)

    Article  CAS  Google Scholar 

  13. H. Dong, Z. Li, Z. Ding et al., Nanoplates of α-SnWO4 and SnW3O9 prepared via a facile hydrothermal method and their gas-sensing property. Sens. Actuators B: Chem. 140, 623–628 (2009)

    Article  CAS  Google Scholar 

  14. G. Liu, T. Zhang, X. Huang, Y. Wei, D. Guo, N. Wu, X. Liu, Superior lithium storage performance of brain kernel-like WO3 assembled with nanocrystallites via hydrothermal treatment. Chem. Lett. 48, 1112–1115 (2019)

    Article  CAS  Google Scholar 

  15. H. Huang, X. Ju, H. Li, B. Qu, T. Wang, Construction of complex WO3-SnO2 hollow nanospheres as a high performance anode for lithium-ion batteries. J. Alloys Compd. 744, 375–380 (2018)

    Article  CAS  Google Scholar 

  16. F. Chen, J. Wang, L. Huang, H. Bao, Y. Shi, Ordered mesoporous crystalline Mo-doped WO2 materials with high tap density as anode material for lithium ion batteries. Chem. Mater. 28, 608–617 (2016)

    Article  CAS  Google Scholar 

  17. T.F. Yi, H.K.M. Sari, X. Li, F. Wang, Y.R. Zhu, J. Hu, J. Zhang, X. Li, A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 85, 105955 (2021)

    Article  CAS  Google Scholar 

  18. T.F. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. Xie, Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 3, 217–220 (2020)

    Article  Google Scholar 

  19. L. Zhang, Y. Huang, Y.E. Miao, W. Fan, T. Liu, Hierarchical composites of NiCo2S4 nanorods grown on carbon nanofibers as anodes for high-performance lithium ion batteries. Compos. Commun. 21, 100395 (2020)

    Article  Google Scholar 

  20. T.F. Yi, J. Mei, P.P. Peng, S. Luo, Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos. B 167, 566–572 (2019)

    Article  CAS  Google Scholar 

  21. I.S. Cho, C.H. Kwak, D.W. Kim, S. Lee, K.S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 113, 10647–10653 (2009)

    Article  CAS  Google Scholar 

  22. T.F. Yi, J.P. Qu, X. Lai, X. Han, H. Chang, Y.R. Zhu, Toward high-performance Li storage anodes: design and construction of spherical carbon-coated CoNiO2 materials. Mater. Today Chem. 19, 100407 (2021)

    Article  CAS  Google Scholar 

  23. T.F. Yi, L.Y. Qiu, J. Mei, S.Y. Qi, P. Cui, S. Luo, Y.R. Zhu, Y. Xie, Y.B. He, Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 65, 546–556 (2020)

    Article  CAS  Google Scholar 

  24. Q. jiang, X. Chen, H. Gao, C.Q. Feng, Z.P. Guo, Synthesis of Cu2ZnSnS4 as novel anode material for lithium-ion battery. Electrochim. Acta 190, 703–712 (2016)

    Article  CAS  Google Scholar 

  25. J.F. Li, S.L. Xiong, X.W. Li, Y.T. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5, 2045–2054 (2013)

    Article  CAS  Google Scholar 

  26. S. Grugeon, S. Laruelle, L. Dupont, J.M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 5, 895–904 (2003)

    Article  CAS  Google Scholar 

  27. J.S. Do, C.H. Weng, Preparation and characterization of CoO used as anodic material of lithium battery. J. Power Sources 146, 482–486 (2005)

    Article  CAS  Google Scholar 

  28. G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306–5313 (2010)

    Article  CAS  Google Scholar 

  29. X.W. Li, L. Qiao, D. Li, X.H. Wang, W.H. Xie, D.Y. He, Three-dimensional network structured a-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J. Mater. Chem. A 1, 6400–6406 (2013)

    Article  CAS  Google Scholar 

  30. C. Zhang, Z. Chen, Z. Guo, X.W. Lou, Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energ. Environ. Sci. 6, 974–978 (2013)

    Article  CAS  Google Scholar 

  31. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557–2582 (2015)

    Article  CAS  Google Scholar 

  32. W. Wang, Y. Yang, S. Yang, Z. Guo, C. Feng, X. Tang, Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim. Acta 155, 297–304 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (2198073 and NSFC−U1903217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Chen or Chuanqi Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Chen, X., Jiang, Q. et al. Synthesis of SnW3O9/C as novel anode material for lithium-ion battery application. J Mater Sci: Mater Electron 32, 23935–23943 (2021). https://doi.org/10.1007/s10854-021-06853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06853-y

Navigation