Skip to main content

Advertisement

Log in

Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 has been considered as a promising anode material for lithium-ion batteries (LIBs) due to its low cost and high stability, but its low conductivity has greatly limited its application. In this study, the nitrogen-doped TiO2 (N-TiO2) with a uniform carbon coating was prepared by the solvothermal method. According the XPS results, the nitrogen was successfully doped in the TiO2. The N-doped TiO2 electrode exhibited obviously higher lithium-ion storage performance, of which the discharge capacity was 420 mAh g−1 under the current density 0.1 A g−1. Additionally, the superior long-term cycling stability was also observed with a reversible capacity of 148 mAh g−1 after 3000 cycles under 3 A g−1 current density. The result showed that after the nitrogen doped, the replacing of lattice oxygen with nitrogen can decrease the band-gap width and improve the conductivity of titanium oxide. Meanwhile, the oxygen vacancies on the surface of the material can adsorb a large number of lithium ions and produce significant pseudo-capacitance, thus, effectively increasing the specific capacity of the material. Therefore, the N-doped TiO2 electrode can present obviously higher lithium-ion storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones, P.J. Wiseman et al., Mater. Res. Bull. 15, 783–789 (1980)

    Article  CAS  Google Scholar 

  2. A.S. Nagelberg, W.L. Worrell, J. Solid State Chem. 29, 345–354 (1979)

    Article  CAS  Google Scholar 

  3. C. Senthil, T. Kesavan, A. Bhaumik, et al., Electrochim. Acta. 255, 417–427 (2017)

(2017)

  1. J. Li, J. Huang, J. Li, L. Cao, H. Dang, J. Alloys Compd. 727, 998–1005 (2017)

    Article  CAS  Google Scholar 

  2. Y.Y. Zhang, Y.X. Tang, W.L. Li, X.D. Chen, ChemNanoMat. 8, 764–775 (2016)

    Article  CAS  Google Scholar 

  3. A.S. Lee, W. Eom, H. Park, T.H. Han, ACS Appl. Mater. Interf. 9, 25332–25338 (2017)

  4. A. Kashale, K.P. Gattu, K. Ghule, V.H. Ingole et al., Compos. B. Eng. 99, 297–304 (2016)

    Article  CAS  Google Scholar 

  5. H. Han, T. Song, E.K. Lee, A. Devadoss, Y. Jeon, J. Ha et al., ACS Nano 6, 8308–8315 (2012)

    Article  CAS  Google Scholar 

  6. Y.J. Hong, J.W. Yoon, J.H. Lee, Y.C. Kang, Chemistry 21, 371–376 (2015)

    Article  CAS  Google Scholar 

  7. L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, J. Mater. Chem. A. 3, 5708–5713 (2015)

    Article  CAS  Google Scholar 

  8. J. Chen, Y. Zhang, G. Zou et al., Small 12, 5554–5563 (2016)

    Article  CAS  Google Scholar 

  9. A.I. Hochbaum, P. Yang, Chem. Rev. 110, 527–546 (2010)

    Article  CAS  Google Scholar 

  10. N.N. Wang, Z.C. Bai, Y.T. Qian, J. Yang, Adv. Mater. 28, 4126–4133 (2016)

    Article  CAS  Google Scholar 

  11. J.Y. Liao, B.D. Luna, A. Manthiram, J. Mater. Chem. A 4, 801–806 (2015)

    Article  CAS  Google Scholar 

  12. X.M. Yang, W. Chao, Y.C. Yang et al., J. Mater. Chem. A 3, 8800–8807 (2015)

    Article  CAS  Google Scholar 

  13. K. Lan, L. Yao, Z. Wei et al., J. Am. Chem. Soc. 140, 4135–4143 (2018)

    Article  CAS  Google Scholar 

  14. J. Chen, W.X. Song, H.S. Hou et al., Adv. Funct. Mater. 25, 6793–6801 (2015)

    Article  CAS  Google Scholar 

  15. L. Wu, D. Buchholz, D. Bresser et al., J. Power Sources 251, 379–385 (2014)

    Article  CAS  Google Scholar 

  16. F.H. Yang, Z.A. Zhang, H. Yu et al., Electrochim. Acta. 178, 871–876 (2015)

    Article  CAS  Google Scholar 

  17. Y. Yang, Q. Fu, H. Zhao et al., J. Alloys Compd. 769, 257–263 (2018)

    Article  CAS  Google Scholar 

  18. H. He, Q. Gan, H. Wang et al., Nano Energy 44, 217–227 (2018)

    Article  CAS  Google Scholar 

  19. T. Lan, W. Zhang, N.L. Wu et al., Chemistry 23, 5059–5065 (2017)

    Article  CAS  Google Scholar 

  20. A. Kashale, A.S. Rasal, G.P. Kamble et al., Composites 167, 44–50 (2019)

    Article  CAS  Google Scholar 

  21. Y. Zhang, C. Wang, H. Hou et al., Adv. Energy Mater. 7(1600173), 1–12 (2017)

    Google Scholar 

  22. H. Yin, T. Lin, C. Yang et al., Chem. Eur. J. 19, 13313–13316 (2013)

    Article  CAS  Google Scholar 

  23. M. Wei, T. Lin, W. Zhang et al., Chem. Eur. J. 23, 5059–5065 (2017)

    Article  CAS  Google Scholar 

  24. M. Boniecki et al., Ceram. Int. 43, 10066–10070 (2017)

    Article  CAS  Google Scholar 

  25. R. Vinodkumar, I. Navas, K. Porsezian et al., SPECTROCHIM ACTA A 118, 724–732 (2014)

    Article  CAS  Google Scholar 

  26. S. Shang, X. Jiao, D. Chen, A.C.S. Appl, Mater. Interfaces 4, 860–865 (2012)

    Article  CAS  Google Scholar 

  27. J. Li, J. Huang, J. Li et al., J. Alloys Compd. 784, 165–172 (2019)

    Article  CAS  Google Scholar 

  28. N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72, 3072–3079 (1992)

    Article  CAS  Google Scholar 

  29. Y. Wu, X.W. Liu et al., Small 12, 3474–3474 (2016)

    Article  Google Scholar 

  30. H. Cui, Z. Wei, C. Yang et al., J. Mater. Chem. A 2, 8612–8616 (2014)

    Article  CAS  Google Scholar 

  31. W. Zhang, D. Liu, Electrochim. Acta 156, 53–59 (2015)

    Article  CAS  Google Scholar 

  32. Q.M. Gan, H.N. He, Y.H. Zhu et al., ACS Nano 13, 9247–9258 (2019)

    Article  CAS  Google Scholar 

  33. C. Chen, Y. Wen, X. Hu et al., Nat. Commun. 6, 6929 (2015)

    Article  CAS  Google Scholar 

  34. Y. Qiao, X. Hu, Y. Liu et al., J. Mater. Chem. A 1, 10375–10381 (2013)

    Article  CAS  Google Scholar 

  35. X. Bai, T. Li et al., Electrochim. Acta 187, 20–33 (2016)

    Article  CAS  Google Scholar 

  36. J. Lee, Y.M. Chen et al., RSC Adv. 5, 99329–99338 (2015)

    Article  CAS  Google Scholar 

  37. L. Tan, L. Pan, C.C. Cao et al., J. Power Sources 253, 193–200 (2014)

    Article  CAS  Google Scholar 

  38. I. Takahashi, D.J. Payne, R.G. Pali, et al., Chem. Phys. Lett, 454, 314–317 (2008)

  39. C. Savory, A. Ganose, W. Travis et al., J. Mater. Chem. A 4, 12648–12657 (2016)

    Article  CAS  Google Scholar 

  40. Z. Jiang, W. Wei, D. Mao et al., Nanoscale 7, 784–797 (2015)

    Article  CAS  Google Scholar 

  41. X. Wang, K. Zhang, X. Guo et al., New J. Chem. 38, 6139–6146 (2014)

    Article  CAS  Google Scholar 

  42. J.C. Chang, T.C. Chiu, J.H. Chao et al., J. Mater. Chem. 21, 4605–4614 (2011)

    Article  CAS  Google Scholar 

  43. Y.C. Yang, X.B. Ji et al., J. Mater. Chem. A 3, 5648–5655 (2015)

    Article  CAS  Google Scholar 

  44. X. Chen, C. Burda et al., J. Am. Chem. Soc. 140, 4135–4143 (2018)

    Article  CAS  Google Scholar 

  45. W. Jiao, N. Li, L. Wang, L, et al., Chem. Commun. 49, 3461–3463 (2013)

  46. R.T. Asahi, T. Morikawa et al., Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  47. X. Wang, Z. Li, J. Shi et al., Chem. Rev. 114, 9346–9384 (2014)

    Article  CAS  Google Scholar 

  48. L. Zhao, T, Tang, W, Chen, et al., Green Energy Environ. 3, 277–285 (2018)

  49. Y.L. Xing, S.B. Wang et al., Power Sourc 385, 10–17 (2018)

    Article  CAS  Google Scholar 

  50. Z. Lu, C.T. Yip et al., ChemPlusChem 77, 991–1000 (2012)

    Article  CAS  Google Scholar 

  51. Y. Hu, Y. Li et al., ACS Appl. Mater. Interf 12, 21709–21719 (2020)

    Article  CAS  Google Scholar 

  52. X. Yang, C. Wang, Y. Yang et al., J. Mater. Chem. A 3, 8800–8807 (2015)

    Article  CAS  Google Scholar 

  53. Y. Li, M.S. Chen, J. Cheng et al., Langmuir 36, 2255–2263 (2020)

    Article  CAS  Google Scholar 

  54. J. Han, A. Hirata, J. Du et al., Nano Energy 49, 354–362 (2018)

    Article  CAS  Google Scholar 

  55. V. Augustyn, J. Come, M.A. Lowe et al., Nat. Mater. 12, 518–522 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Open fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (Xiamen University of Technology Fma 2018009), Fujian Provincial Education Department Fundamental (No. JT180421, JT180423, JT180424), and Natural Science Foundation of Fujian Province (2019J01871)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jing Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JJ., Lei, CX., Li, ZY. et al. Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries. J Mater Sci: Mater Electron 32, 23798–23810 (2021). https://doi.org/10.1007/s10854-021-06708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06708-6

Navigation