Skip to main content
Log in

Research on theoretical and numerical methods of single bubble oscillation

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A comparison of theoretical investigation and numerical simulation of a single bubble oscillation is carried out in this paper. The theoretical research is based on solving Rayleigh-Plesset (R-P) equation and Keller-Miksis (K-M) equation using Runge-Kutta method. The numerical method focuses on the two discrete methods in the volume of fluid (VOF) method, geometric reconstruction (GR) and modified high resolution interface capturing (MHRIC). The results show that the interface captured by MHRIC in the collapse stage is more stable, and the evolution of bubble radius agrees better with the theoretical solution. The R-P equation and K-M equation, which omit the effect of the energy equation, have limitations when the bubble collapses under ultra-high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94–98.

    Article  Google Scholar 

  2. Plesset M. S., Chapman R. B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary [J]. Journal of Fluid Mechanics, 1971, 47: 283–290.

    Article  Google Scholar 

  3. Keller J. B. Bubble oscillations of large amplitude [J]. Acoustical Society of America Journal, 1980, 68(2): 628–633.

    Article  Google Scholar 

  4. Lauterborn W., Kurz T., Mettin R. et al. Experimental and theoretical bubble dynamics [J]. Advances in Chemical Physics, 1999, 110: 295–380.

    Google Scholar 

  5. Peng X. X., Zhang L. X., Wang B. L. et al. Study of tip vortex cavitation inception and vortex singing [J]. Journal of Hydrodynamics, 2019, 31(6): 1170–1177.

    Article  Google Scholar 

  6. Philipp A., Lauterborn W. Cavitation erosion by single laser-produced bubbles [J]. Journal of Fluid Mechanics, 2000, 361: 75–116.

    Article  Google Scholar 

  7. Guo W. L., Li H. C., Wang J. Z. et al. Reaserch progress on interaction between a single cavitation and free surface [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682–1698(in Chinese).

    Google Scholar 

  8. Krefting D., Mettin R., Lauterborn W. High-speed observation of acoustic cavitation erosion in multibubble systems [J]. Ultrasonics Sonochemistry, 2004, 11(3-4): 119–123.

    Article  Google Scholar 

  9. Koukouvinis P., Gavaises M., Supponen O. et al. Numerical simulation of a collapsing bubble subject to gravity [J]. Physics of Fluids, 2016, 28(3): 032110.

    Article  Google Scholar 

  10. Krninger D., Khler K., Kurz T. et al. Particle tracking velocimetry of the flow field around a collapsing cavitation bubble [J]. Experiments in Fluids, 2010, 48(3): 395–408.

    Article  Google Scholar 

  11. Zhang A. M., Li S., Cui J. Study on splitting of a toroidal bubble near a rigid boundary [J]. Physics of Fluids, 2015, 27(6): 062102.

    Article  Google Scholar 

  12. Brennen C. E. Fundamentals of multiphase flow [M]. Cambridge, UK: Cambridge University Press, 2009.

    MATH  Google Scholar 

  13. Prosperetti A, Tryggvason G. Computational methods for multiphase flow [M]. Cambridge, UK: Cambridge University Press, 2009.

    MATH  Google Scholar 

  14. Huang X., Wang Q. X., Zhang A. M. et al. Dynamic behaviour of a two-microbubble system under ultrasonic wave excitation [J]. Ultrasonics Sonochemistry, 2018, 43: 166–174.

    Article  Google Scholar 

  15. Liu J. L., Xiao W., Yao X. L. et al. Dynamics of a bubble in a liquid fully confined by an elastic boundary [J]. Physics of Fluids, 2021, 33(6): 063303.

    Article  Google Scholar 

  16. Wang J. X., Liu K., Jiang M. Z. et al. Numerical simulation of the coupled response of stiffened structures subjected to explosion bubble loading [J]. Journal of Marine Science and Technology, 2020, 25(4): 1103–1119.

    Article  Google Scholar 

  17. Koch M., Lechner C., Reuter F. et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM [J]. Computers and Fluids, 2016, 126: 71–90.

    Article  MathSciNet  Google Scholar 

  18. Lechner C., Koch M., Lauterborn W. et al. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach [J]. The Journal of the Acoustical Society of America, 2017, 142(6): 3649–3659.

    Article  Google Scholar 

  19. Koukouvinis P., Gavaises M., Supponen O. et al. Simulation of bubble expansion and collapse in the vicinity of a free surface [J]. Physics of Fluids, 2016, 28(5): 052103.

    Article  Google Scholar 

  20. Osterman A., Dular M., Sirok B. Numerical simulation of a near-wall bubble collapse in an ultrasonic-field [J]. Journal of Fluid Science and Technology, 2009, 4(1): 210–221.

    Article  Google Scholar 

  21. Tang H., Liu Y. L., Cui P. et al. Numerical study on the bubble dynamics in a broken confined domain [J]. Journal of Hydrodynamics, 2020, 32(6): 1029–1042.

    Article  Google Scholar 

  22. Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225.

    Article  Google Scholar 

  23. Muzaferija S., Peric M., Sames P. et al. A two-fluid Navier-Stokes solver to simulate water entry [C]. Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington DC, USA, 1998, 277–289.

    Google Scholar 

  24. van Leer B. Toward the ultimate conservative difference scheme. IV. A second order sequel to Godunov's method [J]. Journal of Computational Physics, 1979, 32: 101–136.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-tian Li.

Additional information

Projects supported by the National Project of China (Grant No. 6140206040301).

Biography: Jie-min Zhan (1963-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Jm., Chen, Yh. & Li, Yt. Research on theoretical and numerical methods of single bubble oscillation. J Hydrodyn 33, 872–877 (2021). https://doi.org/10.1007/s42241-021-0076-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0076-y

Key words

Navigation