Skip to main content
Log in

First Principles Study of Tabun Adsorption on (6,0), (7,0), and (8,0) Boron Nitride Nanotubes

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, we reported sensitivity of (6,0), (7,0), and (8,0) boron nitride nanotubes (BNNTs) toward tabun by using DFT method at the B3LYP/6-311G(d,p) level of the theory. Adsorption energies, DOS, HOMO/LUMO energy gaps, charge transfer, dipole moments, NBO, QTAIM, and second order perturbation energy (E2) were calculated. The most adsorption energy was obtained from the interaction of tabun and (6,0) BNNT. By evaluation of the energies we concluded that (6,0), (7,0), and (8,0) BN nanotubes are not suitable sensors for detecting tabun molecule. The obtained topological data confirmed the calculated adsorption energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Jokanović, in Handbook of Toxicology of Chemical Warfare Agents, Ed. by R. C. Gupta (Elsevier, Amsterdam, 2009).

    Google Scholar 

  2. A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  3. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Eur. Phys. Lett. 28, 335 (1994).

    Article  CAS  Google Scholar 

  4. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science (Washington, DC, U. S.) 269 (5226), 966 (1995).

    Article  CAS  Google Scholar 

  5. L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, ACS Nano 8, 1457 (2014).

    Article  CAS  Google Scholar 

  6. J. Wang et al., Nano Lett. 5, 2528 (2005).

    Article  CAS  Google Scholar 

  7. D. W. H. Fam, Al Palaniappan, A. I. Y. Tok, B. Liedberg, and S. M. Moochhala, Sens. Actuators B 157, 1 (2011).

    Article  CAS  Google Scholar 

  8. I. Cabria, M. J. Lopez, and J. A. Alonso, Comput. Mater. Sci. 35, 238 (2006).

    Article  CAS  Google Scholar 

  9. F. N Ajeel, M. H. Mohammed, and A. M. Khudhair, Russ. J. Phys. Chem. B 13, 196 (2019).

    Article  CAS  Google Scholar 

  10. M. Rezaei-Sameti and M. Pahlevane, Russ. J. Phys. Chem. B 11, 985 (2017).

    Article  CAS  Google Scholar 

  11. A. Farooq Butt, M. N. Ahmed, M. H. Bhatti, M. A. Choudhary, K. Ayub, M. N. Tahir, and T. Mahmood, J. Mol. Struct. 1191, 291 (2019).

    Article  Google Scholar 

  12. B. I. Loukhovitski and A. S. Sharipov, Struct. Chem. 29, 1573 (2018). https://doi.org/10.1007/s11224-018-1163-8

    Article  CAS  Google Scholar 

  13. H. Kim and G. Kim, Appl. Surf. Sci. 501, 144249 (2020).

    Article  CAS  Google Scholar 

  14. M. Noei, N. Ahmadaghaei, and A. A. Salari, J. Saudi Chem. Soc. 21, S12 (2017).

    Article  CAS  Google Scholar 

  15. O. Matarín and A. Rimola, Crystals 6 (5), 63 (2016).https://doi.org/10.3390/cryst6050063

    Article  CAS  Google Scholar 

  16. A. Kazemi Babaheydari and Kh. Tavakoli Hafshajani, Orient. J. Chem. 30, 827 (2014).

    Article  Google Scholar 

  17. A. Michalkova, Y. Paukku, D. Majumdar, and J. Leszczynski, Chem. Phys. Lett. 438, 72 (2007).

    Article  CAS  Google Scholar 

  18. P. Fallahi, H. Jouypazadeh, and H. Farrokhpour, Mol. Liq. 260, 138 (2018).

    Article  CAS  Google Scholar 

  19. M. Yoosefian, N. Etminan, M. Z. Moghani, S. Mirzaei, and Sh. Abbasi, Superlatt. Microstuct. 98, 325 (2016).

    Article  CAS  Google Scholar 

  20. M. Bezi Javan, A. Soltani, A. S. Ghasemi, E. Tazikeh Lemeski, N. Gholami, and H. Balakheyli, Appl. Surf. Sci. 411, 1 (2017).

    Article  Google Scholar 

  21. M. J. Frisch et al., Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998).

  22. B. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  23. T. A. Keith and T. K. Gristmill, AIMAll, Version 10.05.04 Software (Overland Park KS, USA, 2010).

  24. R. G. Parr, L. V. Szentpáty, and Sh. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  25. M. Khaleghian and F. Azarakhshi, Int. J. Nano Dimens. 10, 105 (2019).

    CAS  Google Scholar 

  26. S. Arshadi, S. Abedini, A. Asghari, and F. Alipour Zaghmarzi, J. Chem., ID 421091 (2013). https://doi.org/10.1155/2013/421091

  27. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  28. J. Sauer, P. Ugliengo, E. Garrone, and V. R. Saunders, Chem. Rev. 94, 2095 (1994).

    Article  CAS  Google Scholar 

  29. R. F. W. Bader, S. Johnson, H. T. Tang, and P. L. A. Popelier, J. Phys. Chem. 100, 15398 (1996).

    Article  CAS  Google Scholar 

  30. X. Fradera, N. M. Austen, and R. F. W. Bader, J. Phys. Chem. A 103, 304 (1999).

    Article  CAS  Google Scholar 

  31. D. Michael and P. Mingos, The Chemical Bond I: 100 Years Old and Getting Stronger (Springer Int., Switzerland, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Zardoost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, S., Zardoost, M.R. & Moradian, M. First Principles Study of Tabun Adsorption on (6,0), (7,0), and (8,0) Boron Nitride Nanotubes. Russ. J. Phys. Chem. 95, 1892–1899 (2021). https://doi.org/10.1134/S0036024421090211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090211

Keywords:

Navigation