Skip to main content
Log in

Enhanced Photocatalytic and Photoluminescence Properties of Ce and Dy Co-Doped ZnO Nanoparticles

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cerium and dysprosium co-doped ZnO nanoparticles were synthesized through a simple co-precipitation approach at low temperature. X-ray diffraction was used for the structure and purity analysis of the samples prepared. A hexagonal wurtzite structure was observed with no secondary peaks. The average particle size was ~35 nm. Morphology was studied using scanning electron microscopy. A change in morphology from elongated nanorods to nanoflowers was observed as the concentration of dopants increased. Photoluminescence spectra confirmed the shift of absorption edge towards the visible region of the solar spectrum. Red shift was confirmed by UV–Vis spectroscopy which also revealed the narrowing of bandgap in co-doped samples. The photocatalytic activity of the nanoparticles was evaluated in photodegradation of rhodamine B (RhB) under UV irradiation. The experiment revealed a total degradation of the organic molecules indicated by the elimination of the dye color. The results showed that ZnO photocatalyst, co-doped with cerium and dysprosium (Zn0.90Ce0.05Dy0.05O), exhibited much improved photocatalytic performance (98% degradation) in comparison to un-doped ZnO. The enhanced photocatalytic performance of co-doped samples could be explained by an increase in the amount of surface oxygen vacancies, improved absorption capacity and delayed recombination of photo generated electrons and holes owing to creation of trap states in the bandgap of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Thiyagarajan, M. Kottaisamy, K. Sethupathi, and M. S. R. Rao, J. Displays 30, 202 (2009).

  2. C. Zhang and J. Lin, Chem. Soc. Rev. 41, 7938 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. M. Shang, G. Li, D. Yang, X. Kang, C. Peng, Z. Cheng, and J. Lin, Dalton Trans. 40, 9379 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. P. V. Korake, R. S. Dhabbe, A. N. Kadam, Y. B. Gaikwad, and K. M. Garadkar, J. Photochem. Photobiol. B 130, 11 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  CAS  Google Scholar 

  6. U. O. H. Morkoc, Zinc Oxide: Fundamentals, Materials, and Device Technology (Wiley, Hoboken, 2009).

    Book  Google Scholar 

  7. S. Baskoutas and G. Bester, J. Phys. Chem. C 114, 9301 (2010).

    Article  CAS  Google Scholar 

  8. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature (London, U. K.) 436, 91 (2005).

    Article  CAS  Google Scholar 

  9. D. J. Norris, A. L. Efros, and S. C. Erwin, Science (Washington, DC, U. S.) 319, 1776 (2008).

    Article  CAS  Google Scholar 

  10. K. Yim, J. Lee, D. Lee, M. Lee, E. Cho, H. S. Lee, H.‑H. Nahm, and S. Han, Sci. Rep. 7, 40907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 85, 759 (2008).

    Article  CAS  Google Scholar 

  12. S. Singh, N. Rama, and M. S. R. Rao, Appl. Phys. Lett. 88, 222111 (2006).

    Article  CAS  Google Scholar 

  13. A. Azarov, A. Galeckas, A. Hallén, A. Kuznetsov, E. Monakhov, and B. G. Svensson, J. Appl. Phys. 118, 125703 (2015).

    Article  CAS  Google Scholar 

  14. A. Kunz, P. Peralta-Zamora, S. G. de Moraes, and N. Duran, Quim. Nova 25, 78 (2002).

    Article  CAS  Google Scholar 

  15. P. V. Korake, A. N. Kadam, and K. M. Garadkar, J. Rare Earths 32, 306 (2014).

    Article  CAS  Google Scholar 

  16. N. Shaari, S. H. Tan, and A. R. Mohamed, J. Rare Earths 30, 651 (2012).

    Article  CAS  Google Scholar 

  17. X. J. Yu, L. L. Xiong, G. P. Ma, Y. Liang, and K. R. Liu, J. Rare Earths 32, 849 (2014).

    Article  CAS  Google Scholar 

  18. C. Wang and L. Cao, J. Rare Earths 29, 727 (2011).

    Article  CAS  Google Scholar 

  19. J. Wu, G. L. Zhang, J. Liu, H. B. Gao, C. X. Song, H. R. Du, Z. Li, Z. P. Gong, and Y. G. Lu, J. Rare Earths 32, 727 (2014).

    Article  CAS  Google Scholar 

  20. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  21. M. Romero, J. Blanco, B. Sanchez, A. Vidal, S. Malato, A. I. Cardona, et al., Sol. Energy 66, 169 (1999).

    Article  CAS  Google Scholar 

  22. M. Ahmad, E. Ahmed, Z. L. Hong, J. F. Xu, N. R. Khalid, A. Elhissi, and W. Ahmed, J. Alloys Compd. 577, 717 (2013).

    Article  CAS  Google Scholar 

  23. M. Ahmad, E. Ahmed, Z. L. Hong, Z. Iqbal, N. R. Khalid, T. Abbas, I. Ahmad, A. Elhissi, and W. Ahmed, Ceram. Int. 39, 8693 (2013).

    Article  CAS  Google Scholar 

  24. M. Ahmad, E. Ahmed, Z. L. Hong, X. L. Jiao, T. Abbas, and N. R. Khalid, Appl. Surf. Sci. 285, 702 (2013).

    Article  CAS  Google Scholar 

  25. H. S. Cai, G. G. Liu, W. Y. Lu, X. X. Li, L. Yu, and D. G. Li, J. Rare Earths 26, 71 (2008).

    Article  Google Scholar 

  26. S. Kumar and P. D. Sahare, J. Rare Earths 30, 761 (2012).

    Article  CAS  Google Scholar 

  27. D. K. Sharma, K. K. Sharma, V. Kumar, and A. Sharma, J. Mater. Sci.: Mater. Electron. 27, 10330 (2016).

    CAS  Google Scholar 

  28. Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang, W. Wang, J. Zhang, and H. Zhu, Nanoscale Res. Lett. 9, 480 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. M. Ahmad, E. Ahmed, F. Zafar, N. R. Khalid, N. A. Niaz, A. Hafeez, M. Ikram, M. A. Khan, and Z. Hong, J. Rare Earths 33, 255 (2015).

    Article  CAS  Google Scholar 

  30. N. C. S. Selvam, J. J. Vijaya, and L. J. Kennedy, J. Nanosci. Nanotechnol. 13, 1 (2013).

    Article  CAS  Google Scholar 

  31. S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan, Sci. Rep. 6, 31641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. X. Shi, T. Y. Zhang, and H. L. Wang, J. Rare Earths 29, 746 (2011).

    Article  CAS  Google Scholar 

  33. R. Zeng, J. G. Wang, J. Y. Cui, L. Hu, and K. G. Mu, J. Rare Earths 28, 353 (2010).

    Article  Google Scholar 

  34. C. M. Fan, P. Xue, and Y. P. Sun, J. Rare Earths 24, 309 (2006).

    Article  Google Scholar 

  35. L. Bian, M. X. Song, T. L. Zhou, X. Y. Zhou, and Q. Q. Dai, J. Rare Earths 27, 461 (2009).

    Article  Google Scholar 

  36. M. Zalaj, J. Rare Earths 32, 487 (2014).

    Article  CAS  Google Scholar 

  37. R. K. Kalaiezhily, V. Asvini, G. Saravanan, and K. Ravichandran, Dalton Trans. 48, 12228 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. J. Iqbal, X. Liu, H. Zhu, Z. B. Wua, Y. Zhang, D. Yu, and R. Yu, Acta Mater. 57, 4790 (2009).

    Article  CAS  Google Scholar 

  39. P. Pascariu, M. Homocianu, C. Cojocaru, P. Samoila, A. Airinei, and M. Suchea, Appl. Surf. Sci. 476, 16 (2019).

    Article  CAS  Google Scholar 

  40. M. Romero, J. Blanco, B. Sanchez, A. Vidal, S. Malato, A. I. Cardona, et al., Sol. Energy 66, 169 (1999).

    Article  CAS  Google Scholar 

  41. A. Rahman and R. Jayaganthan, Trans. Indian Inst. Met. 70, 1063 (2016).

    Article  CAS  Google Scholar 

  42. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 351 (1969).

    Article  Google Scholar 

  43. R. Bomila, S. Suresh, and S. Srinivasan, J. Mater. Sci: Mater. Electron. 30, 582 (2019).

    CAS  Google Scholar 

  44. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, J. Photochem. Photobiol. A 141, 209 (2009).

    Article  Google Scholar 

  45. L. Q. Jing, X. J. Sun, W. M. Cai, Z. L. Xu, Y. G. Du, and H. G. Fu, J. Phys. Chem. Solid 64, 615 (2003).

    Article  CAS  Google Scholar 

  46. H. Yamashita, Y. Ichihashi, S. G. Zhang, Y. Matsumurab, Y. Soumab, T. Tatsumic, et al., Appl. Surf. Sci. 121, 305311 (1997).

    Google Scholar 

  47. R. Bomila, S. Srinivasan, A. Venkatesan, B. Bharath, and K. Perinbam, Mater. Res. Innov. 22, 379 (2017).

    Google Scholar 

  48. X. Liu, D. G, Sroppa, M. Heggan, Y. Ermolenko, A. Offenhausser, and Y. Mourzina, J. Phys. Chem. C 119, 10336 (2015).

    Article  CAS  Google Scholar 

  49. J. H. Zeng, Y. L. Yu, Y. F. Wang, and T. Lou, J. Acta. Mater. 57, 1813 (2009).

    Article  CAS  Google Scholar 

  50. A. George, S. K. Sharma, S. Chawla, M. M. Malik, and M. S. Qureshi, J. Alloys Compd. 509, 5942 (2011).

    Article  CAS  Google Scholar 

  51. A. Majid and A. Ali, J. Phys. D: Appl. Phys. 42, 45412 (2009).

    Article  CAS  Google Scholar 

  52. K. F. Berggren and B. E. Sernelius, Phys. Rev. 24, 1971 (1981).

    Article  CAS  Google Scholar 

  53. S. Bhatia and N. Verma, Mater. Res. Bull. 95, 468 (2017).

    Article  CAS  Google Scholar 

  54. S. Wang, L. Bai, and X. Ao, RSC Adv. 8, 36745 (2018).

  55. C. J. Chang, C. Y. Lin, and M. H. Hsu, J. Taiwan. Inst. Chem. Eng., 45, 1954 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atikur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irtiqa, S., Rahman, A. Enhanced Photocatalytic and Photoluminescence Properties of Ce and Dy Co-Doped ZnO Nanoparticles. Russ. J. Phys. Chem. 95, 1900–1910 (2021). https://doi.org/10.1134/S0036024421090260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090260

Keywords:

Navigation