Skip to main content
Log in

Thermodynamic Basicity Constants of Highly Substituted Manganese Porphyrazines and Their Connection to the Structure of Molecules

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Thermodynamic equilibrium constants of protonation of (acetato)(octakis)(4-tert-butylphenyl)- and (acetato)(octakis(3-trifluoromethylphenyl)tetraazaporphynato)manganese(III) in a trifluoroacetic acid–dichloromethane medium are determined via spectrophotometric titration using Hammett acidity function H0 for a mixed solvent. The effect of the higher basicity of the mono-protonated forms against that of the neutral forms is established and interpreted using literature data on tetraazaporphyrin analogs. The role of functional substitution and the electronic structure of coordination centers in the acid–base behavior of porphyrazine complexes is determined. The obtained data are important for developing the theory of reactivity of macroheterocyclic compounds and creating actual supramolecular 2D and 3D structures based on porphyrazines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. B. Sorokin, Coord. Chem. Rev. 389, 141 (2019). https://doi.org/10.1016/j.ccr.2019.03.016.1

    Article  CAS  Google Scholar 

  2. I. A. Lebedeva (Yablokova), S. S. Ivanova, V. Novakova, et al., J. Fluorine Chem. 214, 86 (2018). https://doi.org/10.1016/j.jfluchem.2018.08.006

    Article  CAS  Google Scholar 

  3. M. S. Rodríguez-Morgade and P. A. Stuzhin, J. Porphyr. Phthalocyan. 8, 1129 (2004). https://doi.org/10.1142/s1088424604000490

    Article  Google Scholar 

  4. T. Koczorowski, W. Szczolko, K. Burda, et al., Dyes Pigm. 112, 138 (2015). https://doi.org/10.1016/j.dyepig.2014.06.033

    Article  CAS  Google Scholar 

  5. T. Koczorowski, J. Ber, T. Sokolnicki, et al., Dyes Pigm. 178, 108370 (2020). https://doi.org/10.1016/j.dyepig.2020.108370

    Article  CAS  Google Scholar 

  6. T. Rebis, S. Lijewski, J. Nowicka, et al., Electrochim. Acta 168, 216 (2015). https://doi.org/10.1016/j.electacta.2015.03.191

    Article  CAS  Google Scholar 

  7. J. Piskorz, P. Skupin, S. Lijewski, et al., J. Fluorine Chem. 135, 265 (2012).

    Article  CAS  Google Scholar 

  8. D. T. Mlynarczyk, S. Lijewski, M. Falkowski, et al., ChemPlusChem 81, 460 (2016). https://doi.org/10.1002/cplu.201600051

    Article  CAS  PubMed  Google Scholar 

  9. T. Koczorowski, T. Rębiś, W. Szczolko, et al., J. Electroanal. Chem. 848, 113322 (2019). https://doi.org/10.1016/j.jelechem.2019.113322

    Article  CAS  Google Scholar 

  10. A. Koca, E. Gonca, and A. Gül, J. Electroanal. Chem. 612, 231 (2008). https://doi.org/10.1016/j.jelechem.2007.09.028

    Article  CAS  Google Scholar 

  11. V. V. Korolev, I. M. Aref’ev, T. N. Lomova, E. N. Ovchenkova, M. E. Klyueva, A. G. Zakharov, and D. V. Korolev, Russ. J. Phys. Chem. A 86, 1165 (2012). https://doi.org/10.1134/S0036024412070102

    Article  CAS  Google Scholar 

  12. M. J. Camenzind and C. L. Hill, Inorg. Chim. Acta 99, 63 (1985). https://doi.org/10.1016/S0020-1693(00)86049-1

    Article  CAS  Google Scholar 

  13. F. A. Walker, in The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guilard (Academic, San Diego, CA, 2000), Vol. 5, Chap. 36, p. 81.

    Google Scholar 

  14. E. N. Ovchenkova and T. N. Lomova, Russ. J. Org. Chem. 47, 1581 (2011). https://doi.org/10.1134/S107042801110023X

    Article  CAS  Google Scholar 

  15. E. N. Ovchenkova, N. G. Bichan, N. O. Kudryakova, et al., Dyes Pigm. 153, 225 (2018). https://doi.org/10.1016/j.dyepig.2018.02.023

    Article  CAS  Google Scholar 

  16. E. N. Ovchenkova, N. G. Bichan, and T. N. Lomova, Tetrahedron 71, 6659 (2015). https://doi.org/10.1016/j.tet.2015.07.054

  17. P. A. Stuzhin, M. Hamdush, and H. Homborg, Mendeleev Commun. 7, 196 (1997). https://doi.org/10.1070/MC1997v007n05ABEH000819

    Article  Google Scholar 

  18. P. Petrik, P. Zimcik, K. Kopecky, et al., J. Porphyr. Phthalocyan. 11, 487 (2007). https://doi.org/10.1142/S1088424607000564

    Article  CAS  Google Scholar 

  19. E. N. Ovchenkova, T. N. Lomova, and M. Hanack, Macroheterocycles 3, 63 (2010). https://doi.org/10.6060/mhc2010.1.63

    Article  CAS  Google Scholar 

  20. T. N. Lomova, in Theoretical and Experimental Methods of Solution Chemistry (Problems of Solution Chemistry), Ed. by A. Yu. Tsivadze (Prospekt, Moscow, 2011), p. 309 [in Russian].

    Google Scholar 

  21. E. E. Suslova, E. N. Ovchenkova, and T. N. Lomova, Zh. Fiz. Khim. 87, 1693 (2013).

    Google Scholar 

  22. R. Silverstein, G. Bassler, and T. Morrill, Mass Spectrometry. Spectrometric Identification of Organic Compounds, 5th ed. (Wiley, New York, 1991), p. 3.

    Google Scholar 

  23. M. E. Klyueva, N. V. Repina, N. V. Chizhova, and B. D. Berezin, Russ. J. Coord. Chem. 31, 19 (2005). https://doi.org/doi.org/0.1007/PL00022080

    Article  CAS  Google Scholar 

  24. M. E. Klyueva, P. A. Stuzhin, and B. D. Berezin, Russ. J. Coord. Chem. 29, 189 (2003). https://doi.org/10.1134/S1070363214070251

    Article  CAS  Google Scholar 

  25. P. A. Stuzhin, Doctoral (Chem.) Dissertation (Ivan. State Chem.-Technol. Univ., Ivanovo, 2004).

  26. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Spectroscopy of Chlorophyll and Related Compounds (Nauka Tekhnika, Minsk, 1968) [in Russian].

    Google Scholar 

  27. E. N. Ovchenkova and T. N. Lomova, Russ. J. Phys. Chem. A 89, 190 (2015). https://doi.org/10.1134/S0036024415020193

    Article  CAS  Google Scholar 

  28. A. N. Nesmeyanov and N. A. Nesmeyanov, Fundamentals of Organic Chemistry (Khimiya, Moscow, 1969; Mir, Moscow, 1977), Vol. 1.

  29. S. S. Ivanova and P. A. Stuzhin, Russ. J. Coord. Chem. 30, 765 (2004). https://doi.org/10.1023/B:RUCO.0000047462.95197.26

    Article  CAS  Google Scholar 

  30. P. A. Stuzhin, E. V. Kabesheva, and O. G. Khelevina, Russ. J. Coord. Chem. 29, 352 (2003). https://doi.org/10.1023/A:1023632019623

    Article  CAS  Google Scholar 

  31. P. A. Stuzhin, I. S. Migalova, and Kh. Homborg, Russ. J. Coord. Chem. 26, 6 (2000).

    CAS  Google Scholar 

  32. T. N. Lomova, V. V. Korolev, A. G. Ramazanova, and E. N. Ovchenkova, J. Porphyr. Phthalocyan. 19, 1262 (2015). https://doi.org/10.1142/S1088424615501114

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the shared resource center of the Upper Volga Regional Center of Physicochemical Research.

Funding

This work was performed as part of the State Academies of Sciences Program, subject no. 0092-2014-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ovchenkova.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchenkova, E.N., Lomova, T.N. Thermodynamic Basicity Constants of Highly Substituted Manganese Porphyrazines and Their Connection to the Structure of Molecules. Russ. J. Phys. Chem. 95, 1791–1797 (2021). https://doi.org/10.1134/S0036024421090193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090193

Keywords:

Navigation