Skip to main content
Log in

Co-composting of cotton residues with olive mill wastewater: process monitoring and evaluation of the diversity of culturable microbial populations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With the aim to recommend an integrated alternative for the combined treatment of olive mill wastewater (OMW) and cotton residues (CR), and the production of high value and environmentally friendly products, two compost piles were set up. The first pile (control, pile 1) consisted of ginned CR, whereas the second (pile 2) was made of CR with the addition of OMW. A series of physicochemical parameters and the culturable microbial diversity in both piles were assessed. Co-composting (pile 2) displayed higher temperatures during the whole process, a prolonged second thermophilic phase and temperature values higher than 40 °C even after the thermophilic stage. Comparing the physicochemical parameters of the pile 2 with those of the pile 1, it was deduced that pH in the former was more acidic during the onset of the process; the EC values were higher throughout the process, while the levels of ammonium and nitrate nitrogen, as well as the NH4+/NO3 ratios, were lower at most of the sampling dates. By evaluating the abovementioned results, it was estimated that the co-composting process headed sooner toward stability and maturity, Isolated microorganisms from both piles were identified as members of the genera Brevibacillus, Serratia, Klebsiella, and Aspergillus, whereas active thermotolerant diazotrophs were detected in both piles at the 2nd thermophilic phase emerging a promising prospect upon further evaluation for enhancing the end-product quality. Our findings indicate that co-composting is an interesting approach for the exploitation of large quantities of agro-industrial residues with a final product suitable for improving soil fertility and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Rahman, M. A., Nour El-Din, M., Refaat, B. M., Abdel-Shakour, E. H., Ewais, E. E. D., & Alfefaey, H. M. A. (2016). Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw. Annals of Agriculture Sciences, 61(1), 135–143.

    Article  Google Scholar 

  • Agnolucci, M., Cristani, C., Battini, F., Palla, M., Cardelli, R., Saviozzi, A., & Nuti, M. (2013). Microbially-enhanced composting of olive mill solid waste (wet husk): Bacterial and fungal community dynamics at industrial pilot and farm level. Bioresource Technology, 134, 10–16.

    Article  CAS  Google Scholar 

  • Ahmed, I. S. A., Omer, A. M., Ibrahim, A. M., & Agha, M. K. (2018). Brevibacillus spp. in Agroecology: The beneficial impacts in biocontrol of plant pathogens and soil bioremediation. Fungal Genomics and Biology, 8(2), 1–5.

    Article  Google Scholar 

  • Ahmed, P. M., Fernandez, P. M., de Figuero, L. I. C., & Pajot, H. F. (2019). Exploitation alternatives of olive mill wastewater: Production of value-added compounds useful for industry and agriculture. Biofuel Research Journal, 22, 980–994.

    Article  Google Scholar 

  • Balis, C., Chatzipavlidis, J., & Flouri, F. (1996). Olive mill waste as a substrate for nitrogen fixation. International Biodeterioration and Biodegradation, 38, 169–118.

    Article  CAS  Google Scholar 

  • Banegas, V., Moreno, J. L., Moreno, J. I., Garcia, C., Leon, G., & Hernadez, T. (2007). Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management, 27, 1317–1327.

    Article  CAS  Google Scholar 

  • Beauchamp, C. J., Kloepper, J. W., Lifshitz, R., Dion, P., & Antoun, H. (1991). Frequent occurrence of the ability to utilize octopine in rhizobacteria. Canadian Journal of Microbiology, 37(2), 158–164.

    Article  CAS  Google Scholar 

  • Beffa, T., Blanc, M., Lyon, P.-F., Vogt, G., Marchiani, M., Fischer, J. L., & Aragno, M. (1996a). Isolation of Thermus strains from hot composts (60 to 80°C). Applied Environmental Microbiology, 62, 1723–1727.

    Article  CAS  Google Scholar 

  • Beffa, T., Blanc, M., Marilley, L., Fischer, J. L., Lyon, P.-F., & Aragno, M. (1996b). Taxonomic and metabolic microbial diversity during composting. In M. de Bertoldi, P. Sequi, B. Lemmes, & T. Papi (Eds.), The science of composting (pp. 149–161). Springer.

    Chapter  Google Scholar 

  • Bernal, M. P., Paredes, C., Sanchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63, 91–99.

    Article  CAS  Google Scholar 

  • Bremner, J. (1965). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis, Part 2 (pp. 1149–1178). American Society of Agronomy Monograph.

    Google Scholar 

  • Brewer, L. J., & Sullivan, D. M. (2003). Maturity and stability evaluation of composted yard trimmings. Compost Science and Utilization, 11, 96–112.

    Article  Google Scholar 

  • Chen, M., Li, Y., Li, S., Tang, L., Zheng, J., & An, Q. (2016). Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae. Journal of Basic Microbiology, 56, 78–84.

    Article  CAS  Google Scholar 

  • Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 33, 745–755.

    Article  CAS  Google Scholar 

  • Chowdhury, A., Akratos, C., Vayenas, D., & Pavlou, S. (2013). Olive mill waste composting: A review. International Biodeterioration and Biodegradation, 85, 108–119.

    Article  CAS  Google Scholar 

  • European Commission. (2020). Market situation in the olive oil and table olives sectors. Resource document. https://ec.europa.eu/info/sites/info/files/food-farmingfisheries/plants_and_plant_products/documents/market-situation-olive-oil-table-olives_en.pdf

  • EL-Masry, M. H., Khalil, A. I., Hassouna, M. S., & Ibrahim, H. A. H. (2002). In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World Journal of Microbiology & Biotechnology, 18, 551–558.

    Article  CAS  Google Scholar 

  • Finstein, M. S., & Miller, F. C. (1985). Principles of composting leading to maximization of decomposition rate, odor control, and cost effectiveness. In J. K. R. Gasser (Ed.), Composting of agricultural and other wastes (pp. 13–26). Elsevier Applied Science Publications.

    Google Scholar 

  • Galli, E., Pasetti, L., Fiorelli, F., & Tomati, U. (1997). Olive-mill wastewater composting: Microbiological aspects. Waste Management and Research, 15, 323–330.

    Article  CAS  Google Scholar 

  • Haddad, K., Jequirim, M., Jerbi, B., Chouchene, A., Dutournié, P., Theverin, N., Ruidavets, L., Jellali, S., & Limousy, L. (2017). Olive mill wastewater: From a pollutant to green fuels, agricultural water source and biofertilizer. ACS Sustainable Chemistry and Engineering, 5, 8988–8996.

    Article  CAS  Google Scholar 

  • Hamawand, I., Sandell, G., Pittaway, P., Chakrabarty, S., Yusaf, T., Chen, G., et al. (2016). Bioenergy from cotton industry wastes: A review and potential. Renewable and Sustainable Energy Reviews, 66, 435–448.

    Article  CAS  Google Scholar 

  • Hogg, D., Favoino, E., Centemero, M., Caimi, V., Amlinger, F. Derliegher, W., et al. (2002). Comparison of compost standards within the Eu, North America and Australia. The Wask and Resources Action Programme (WRAP), Oxon, ISBN I-84405-003-3.

  • Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57, 503–507.

    Article  CAS  Google Scholar 

  • Kavvadias, V., Komnitsas, K., & Doula, M. (2011). Long term effects of olive-mill wastewater affect soil chemical and microbial properties. Soil Research, 53, 461–473.

    Article  Google Scholar 

  • Keeney, D. R., & Nelson, D. W. (1982). Nitrogen—Inorganic forms. In A. I. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 643–698). Agronomy, A.S.A, C.S.S.A and S.S.S.A, Μadison.

    Google Scholar 

  • Khalil, A. I., Beheary, M. S., & Salem, E. M. (2001). Monitoring of microbial populations and their cellulolytic activities during the composting of municipal solid wastes. World Journal of Microbiology and Biotechnology, 17, 155–161.

    Article  CAS  Google Scholar 

  • Langarica-Fuentes, A., Handley, P. S., Hailden, A., Fox, G., & Robson, G. D. (2014). An investigation of the biodiversity of thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecology, 11, 132–144.

    Article  Google Scholar 

  • Lin, L., Wei, C., Chen, M., Wang, H., Li, Y., Yang, L., & An, Q. (2015). Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Standards in Genomic Sciences, 10, 22.

    Article  CAS  Google Scholar 

  • Liu, D., Chen, L., Zhu, X., Wang, Y., Xuan, Y., Liu, X., Chen, L., & Duan, Y. (2018). Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.01134

    Article  Google Scholar 

  • Lung, A. J., Lin, C. M., Kim, J. M., Marshall, M. R., Nordstedt, R., Thompson, N. P., & Wei, C. I. (2001). Destruction of Escherichia coli 0157:H7 and Salmonella enteritidis in cow manure composting. Journal of Food Protection, 64, 1309–1314.

    Article  CAS  Google Scholar 

  • Lutfu Cakmakci, M., Evans, H. J., & Seidler, R. J. (1981). Characteristics of nitrogen-fixing Klebsiella oxytoca isolated from wheat roots. Plant and Soil, 61, 53–63.

    Article  Google Scholar 

  • Lόpez-Gonzales, J. A., Lopez, M. J., Vargas-Garcia, M. C., & Suàrez-Estrella, F. (2013). Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting. Bioresource Technology, 146, 574–584.

    Article  CAS  Google Scholar 

  • Manios, V., & Balis, C. (1983). Respiratory to determine optimum conditions for the biodegradation of extracted oil-press cake. Soil Biology Biochemistry, 15(1), 75–83.

    Article  Google Scholar 

  • Mari, I., Ehaliotis, C., Kotsou, M., Balis, C., & Georgakakis, D. (2003). Respiration profiles in monitoring the composting of by-products from the olive oil agro-industry. Bioresource Technology, 87, 331–336.

    Article  CAS  Google Scholar 

  • Mehta, C. M., Uma, P., Franke-Whittle, I. H., & Sharma, A. K. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34, 607–622.

    Article  CAS  Google Scholar 

  • Milinković, M., Lalević, B., Jovičić-Petrović, J., Golubović-Ćurguz, V., Kljujev, I., & Raičević, V. (2019). Biopotential of compost and compost products derived from horticultural waste-Effect on plant growth and plant pathogens’ suppression. Process Safety and Environmental Protection, 121, 299–306.

    Article  CAS  Google Scholar 

  • Mukherjee, T., Banik, A., & Mukhopadhyay, S. K. (2020). Plant growth promoting traits of a thermophilic strain of the Klebsiella group with its effect on rice plant growth. Current Microbiology. https://doi.org/10.1007/s00284-020-02032-0

    Article  Google Scholar 

  • Nafez, A. H., Nikaeen, M., Kadkhodaie, S., Hatamzadeh, M., & Moghim, S. (2015). Sewage sludge composting: Quality assessment for agricultural application. Environmental Monitoring and Assessment, 187, 709.

    Article  CAS  Google Scholar 

  • Ntougias, S., Bourtzis, K., & Tsiamis, G. (2013). The Microbiology of olive mill wastes. BioMed Research International. https://doi.org/10.1155/2013/784591

    Article  Google Scholar 

  • Panda, A. K., Bisht, S. S., DeMondal, S., Kumar, N. S., Gurusubramanian, G., & Panigrahi, A. K. (2014). Brevibacillus as a biological tool: A short review. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-013-0099-7

    Article  Google Scholar 

  • Paredes, C., Bernal, M. P., Cegarra, J., & Roig, A. (2002). Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes. Bioresource Technology, 85, 1–8.

    Article  CAS  Google Scholar 

  • Paredes, C., Cegarra, J., Bernal, M. P., & Roig, A. (2005). Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Environment International, 31, 305–312.

    Article  CAS  Google Scholar 

  • Parkinson, D. (1994). Filamentous Fungi. In R. W. Weaver (Ed.), Methods of soil analysis, Part 2 (pp. 329–350). Microbiological and Biochemical Properties.

    Google Scholar 

  • Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103.

    Article  CAS  Google Scholar 

  • Rennie, R. J. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen fixing) bacteria from soils. Canadian Journal of Microbiology, 27, 8–14.

    Article  CAS  Google Scholar 

  • Ribeiro, A. L. V., Aquino, S., Francos, M. S., & Golin Galvão, R. (2019). In situ analysis of a composting plant located in São Paulo city: Fungal ecology in different composting phases. Acta Scientiarum Biological Sciences, 41(1), 43496.

    Article  Google Scholar 

  • Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., & Swings, J. (2003). A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology, 53(4), 349–410.

    Google Scholar 

  • Sahu, S., & Pramanik, K. (2015). Bioconversion of cotton gin waste to bioethanol. Environmental Microbiology and Biotechnology, 45, 267–288.

    Article  CAS  Google Scholar 

  • Suarez-Estrella, F., Jurado, M. M., Vargas-Garcia, M. C., Lopez, M. J., & Moreno, J. (2013). Isolation of bio-protective microbial agents from eco-compost. Biological Control, 67, 66–74.

    Article  Google Scholar 

  • Tejada, M., & Gonzalez, J. L. (2003). Effects of the application of a compost originating from crushed cotton gin residues on wheat yield under dryland conditions. European Journal of Agronomy, 19, 357–368.

    Article  Google Scholar 

  • Tiquia, S. M. (2002). Evolution of extracelular enzyme activities during manure composting. Journal of Applied Microbiology, 92, 764–775.

    Article  CAS  Google Scholar 

  • Tomati, U., Belardinelli, M., Andreu, M., Galli, E., Capitani, D., & Proietti, N. (2002). Evaluation of commercial compost quality. Waste Management and Research, 20, 389–397.

    Article  Google Scholar 

  • Tortosa, G., Alburquerque, J. A., Ait-Baddi, G., & Cegara, J. (2012). The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (‘alperujo’). Journal of Cleaner Production, 26, 48–35.

    Article  CAS  Google Scholar 

  • Tortosa, G., Tarrablo, F., Maza-Màrquez, P., Avand, E., Calvo, C., & Gonzàlez-Muma, C. (2020). Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste (‘alperujo’) composting. Bioresource Technology, 295, 122267.

    Article  CAS  Google Scholar 

  • Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: A review. Bioresource Technology, 72, 169–183.

    Article  CAS  Google Scholar 

  • Upreti, J. C., & Joshi, M. C. (1984). Cellulolytic activity of mesophilic and thermophilic fungi isolated from mushroom compost. Indian Phytopathology, 37(3), 473–476.

    Google Scholar 

  • Venieraki, A., Dimou, M., Pergalis, P., Kefalogianni, I., Chatzipavlidis, I., & Katinakis, P. (2011). The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microbial Ecology, 61, 277–285.

    Article  Google Scholar 

  • Venieri, D., Rouvalis, A., & Iliopoulou-Georgudaki, J. (2010). Microbial and toxic evaluation of raw and treated olive mill wastewaters. Journal of Chemical Technology and Biotechnology, 85, 1380–1388.

    Article  CAS  Google Scholar 

  • Vuorinen, A. H., & Saharinen, M. H. (1997). Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture, Ecosystems and Environment, 66, 19–29.

    Article  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  Google Scholar 

  • Wellington, E. M. H., & Toth, I. K. (1994). Actinomycetes. In R. W. Weaver (Ed.), Methods of soil analysis, Part 2 (pp. 269–290). Microbiological and Biochemical Properties.

    Google Scholar 

  • Woomer, P. L. (1994). Most probable number counts. In R. W. Weaver (Ed.), Methods of soil analysis, Part 2. Microbiological and Biochemical Properties.

    Google Scholar 

  • Zuberer, D. A. (1994). Recovery and enumeration of viable bacteria. In R. W. Weaver (Ed.), Methods of soil analysis, Part 2 (pp. 119–144). Microbiological and Biochemical Properties.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iordanis Chatzipavlidis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kefalogianni, I., Skiada, V., Tsagou, V. et al. Co-composting of cotton residues with olive mill wastewater: process monitoring and evaluation of the diversity of culturable microbial populations. Environ Monit Assess 193, 641 (2021). https://doi.org/10.1007/s10661-021-09422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09422-2

Keywords

Navigation