Skip to main content

Advertisement

Log in

Research progress of DLX6-AS1 in human cancers

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are a kind of translational-repressor RNAs composed of more than 200 nucleotides and formerly considered as “transcriptional noise”. Recently studies have shown that lncRNAs could bind to multiple biomolecules such as DNA, transcription factors, RNA, chromatin complexes and proteins, and regulate target gene expression at multi-levels, thus playing an essential role in human tumors. DLX6-AS1, a recently discovered oncogenic lncRNA, is highly expressed in various human tumors, including lung cancer, liver cancer and pancreatic cancer. This paper mainly reviewed the regulatory mechanism of DLX6-AS1 as a competitive endogenous RNA (ceRNA) in tumor cell proliferation, cell apoptosis, angiogenesis, epithelial–mesenchymal transformation, chemotherapy resistance and metabolic changes. Furthermore, the translational value of DLX6-AS1 in cancer was also elucidated, which suggested its potential as a diagnostic or prognostic biomarker in cancer. In summary, this present article not only makes an in-depth analysis of the expression changes and carcinogenic mechanism of DLX6-AS1 in various human cancers, but also provides a new breakthrough for the diagnosis and treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

LncRNAs:

Long non-coding RNAs

DLX6-AS1:

Distal-less homeobox 6 antisense 1

CeRNA:

Competitive endogenous RNA

CADM1:

Cell adhesion molecule 1

STAT2:

Signal transducer and activator of transcription 2

STAT3:

Signal transducer and activator of transcription 3

RIP:

RNA immunoprecipitation

DNMT1:

DNA methyltransferase 1

EMT:

Epithelial to mesenchymal transition

ASO:

Antisense oligonucleotides

PRR11:

Proline-rich 11

WEE1:

WEE1 G2 checkpoint kinase

FHL2:

Four and a half LIM domains protein 2

OCT1:

Octamer transcription factor 1

HOXA9:

Homeobox A9

ZEB1:

Zinc finger E-box binding homeobox 1

Snail1:

Snail family transcriptional inhibitor 1

GSPT1:

G1 to S phase transition 1

MMP-2:

Matrix metalloproteinase-2

Cul4A:

Cullin4A

BDNF:

Brain-derived neurotrophic factor

YAP1:

Yes-associated protein 1

PLK4:

Polo-like kinase 4

FZD4:

Frizzled 4

SNCG:

Synuclein γ

DLK1:

Delta like noncanonical notch ligand 1

PDK1:

Pyruvate dehydrogenase kinase 1

TRPC3:

Transient receptor potential canonical 3

RUNX2:

Runt-related transcription factor-2

HSP90B1:

Heat shock protein 90B1

PXN:

Paxillin

NSCLC:

Non-small cell lung cancer

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

EOC:

Epithelial ovarian cancer

NB:

Neuroblastoma

OS:

Osteosarcoma

BC:

Bladder cancer

LSCC:

Laryngeal squamous cell carcinoma

PC:

Pancreatic cancers

CRC:

Colorectal cancer

ESCC:

Esophageal squamous cell carcinoma

LC:

Laryngeal carcinoma

EC:

Esophageal cancer

PI3K:

Phosphatidylinositol 3-kinase

mTOR:

Mammalian target of rapamycin

EZH2:

Enhancer of zeste homologue 2

LARGE:

Like-acetylglucosaminyltransferase

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Constanty F, Shkumatava A. lncRNAs in development and differentiation: from sequence motifs to functional characterization. Development. 2021;148:dev182741.

    Article  CAS  PubMed  Google Scholar 

  3. Taniue K, Akimitsu N. The functions and unique features of LncRNAs in cancer development and tumorigenesis. Int J Mol Sci. 2021;22:632.

    Article  CAS  PubMed Central  Google Scholar 

  4. Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-coding RNAs participate in the pathogenesis of neuroblastoma. Front Oncol. 2021;11:617362.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The emerging landscape of long non-coding RNAs in colorectal cancer metastasis. Front Oncol. 2021;11:641343.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ho J, Man J, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. Wiley Interdiscip Rev RNA. 2021;12: e1647.

    Article  CAS  PubMed  Google Scholar 

  7. Tian S, Liu J, Kong S, Peng L. LncRNA DLX6-AS1 as a potential molecular biomarker in the clinicopathology and prognosis of various cancers: a meta-analysis. Biosci Rep. 2020;40.

  8. Li J, Li P, Zhao W, Yang R, Chen S, Bai Y, et al. Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 2015;15:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sun W, Zhang L, Yan R, Yang Y, Meng X. LncRNA DLX6-AS1 promotes the proliferation, invasion, and migration of non-small cell lung cancer cells by targeting the miR-27b-3p/GSPT1 axis. Onco Targets Ther. 2019;12:3945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu X, Tian Y, Kuang W, Wen S, Guo W. Long non-coding RNA DLX6-AS1 silencing inhibits malignant phenotypes of gastric cancer cells. Exp Ther Med. 2019;17:4715–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, He X, Jin T, Gang L, Jin Z. Long non-coding RNA DLX6-AS1 aggravates hepatocellular carcinoma carcinogenesis by modulating miR-203a/MMP-2 pathway. Biomed Pharmacother. 2017;96:884–91.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao J, Liu HR. Down-regulation of long noncoding RNA DLX6-AS1 defines good prognosis and inhibits proliferation and metastasis in human epithelial ovarian cancer cells via Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:3243–52.

    CAS  PubMed  Google Scholar 

  13. Zhang HY, Xing MQ, Guo J, Zhao JC, Chen X, Jiang Z, et al. Long noncoding RNA DLX6-AS1 promotes neuroblastoma progression by regulating miR-107/BDNF pathway. Cancer Cell Int. 2019;19:313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang N, Meng X, Mei L, Zhao C, Chen W. LncRNA DLX6-AS1 promotes tumor proliferation and metastasis in osteosarcoma through modulating miR-641/HOXA9 signaling pathway. J Cell Biochem. 2019.

  15. Wang H, Niu X, Jiang H, Mao F, Zhong B, Jiang X, et al. Long non-coding RNA DLX6-AS1 facilitates bladder cancer progression through modulating miR-195-5p/VEGFA signaling pathway. Aging (Albany NY). 2020;12:16021–34.

    Article  CAS  Google Scholar 

  16. Liu Y, Liu X, Zhang X, Deng J, Zhang J, Xing H. lncRNA DLX6-AS1 promotes proliferation of laryngeal cancer cells by targeting the miR-26a/TRPC3 pathway. Cancer Manage Res. 2020;12:2685–95.

    Article  CAS  Google Scholar 

  17. Zhao P, Guan H, Dai Z, Ma Y, Zhao Y, Liu D. Long noncoding RNA DLX6-AS1 promotes breast cancer progression via miR-505-3p/RUNX2 axis. Eur J Pharmacol. 2019;865:172778.

    Article  CAS  PubMed  Google Scholar 

  18. Kong WQ, Liang JJ, Du J, Ye ZX, Gao P, Liang YL. Long noncoding RNA DLX6-AS1 regulates the growth and aggressiveness of colorectal cancer cells via mediating miR-26a/EZH2 axis. Cancer Biother Radiopharm. 2020.

  19. Zhang JJ, Xu WR, Chen B, Wang YY, Yang N, Wang LJ, et al. The up-regulated lncRNA DLX6-AS1 in colorectal cancer promotes cell proliferation, invasion and migration via modulating PI3K/AKT/mTOR pathway. Eur Rev Med Pharmacol Sci. 2019;23:8321–31.

    PubMed  Google Scholar 

  20. Wang M, Li Y, Yang Y, Liu X, Zang M, Li Y, et al. Long non-coding RNA DLX6-AS1 is associated with malignant progression and promotes proliferation and invasion in esophageal squamous cell carcinoma. Mol Med Rep. 2019;19:1942–50.

    CAS  PubMed  Google Scholar 

  21. An Y, Chen XM, Yang Y, Mo F, Jiang Y, Sun DL, et al. LncRNA DLX6-AS1 promoted cancer cell proliferation and invasion by attenuating the endogenous function of miR-181b in pancreatic cancer. Cancer Cell Int. 2018;18:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang X, Guo H, Bao Y, Yu H, Xie D, Wang X. Exosomal long non-coding RNA DLX6-AS1 as a potential diagnostic biomarker for non-small cell lung cancer. Oncol Lett. 2019;18:5197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding XZ, Zhang SQ, Deng XL, Qiang JH. Serum exosomal lncRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol Cancer Res Treat. 2021;20:1533033821990060.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Henderson JT, Webber EM, Sawaya GF. Screening for ovarian cancer: updated evidence report and systematic review for the us preventive services task force. JAMA. 2018;319:595–606.

    Article  PubMed  Google Scholar 

  25. Li C, Wang S, Yang C. Long non-coding RNA DLX6-AS1 regulates neuroblastoma progression by targeting YAP1 via miR-497-5p. Life Sci. 2020;252:117657.

    Article  CAS  PubMed  Google Scholar 

  26. Tian W, Jiang C, Huang Z, Xu D, Zheng S. Comprehensive analysis of dysregulated lncRNAs, miRNAs and mRNAs with associated ceRNA network in esophageal squamous cell carcinoma. Gene. 2019;696:206–18.

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, Ye Z, Mei D, Gu H, Zhang J. Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Manage Res. 2019;11:4209–21.

    Article  CAS  Google Scholar 

  28. Zhang RM, Tang T, Yu HM, Yao XD. LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through Wnt signaling. Biochem Biophys Res Commun. 2018;507:260–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wu DM, Zheng ZH, Zhang YB, Fan SH, Zhang ZF, Wang YJ, et al. Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. J Exp Clin Cancer Res. 2019;38:237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy. Cancers (Basel). 2020;12:2123.

    Article  CAS  Google Scholar 

  31. Zhao Z, Liang S, Sun F. LncRNA DLX6-AS1 promotes malignant phenotype and lymph node metastasis in prostate cancer by inducing LARGE methylation. Front Oncol. 2020;10:1172.

    Article  PubMed  PubMed Central  Google Scholar 

  32. He ZX, Wei BF, Zhang X, Gong YP, Ma LY, Zhao W. Current development of CBP/p300 inhibitors in the last decade. Eur J Med Chem. 2021;209:112861.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Xu Q. Long non-coding RNA DLX6-AS1 mediates proliferation, invasion and apoptosis of endometrial cancer cells by recruiting p300/E2F1 in DLX6 promoter region. J Cell Mol Med. 2020;24:12572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang H, Lu B. The roles of ceRNAs-mediated autophagy in cancer chemoresistance and metastasis. Cancers (Basel). 2020;12:2926.

    Article  CAS  PubMed Central  Google Scholar 

  35. Huang Y, Ni R, Wang J, Liu Y. Knockdown of lncRNA DLX6-AS1 inhibits cell proliferation, migration and invasion while promotes apoptosis by downregulating PRR11 expression and upregulating miR-144 in non-small cell lung cancer. Biomed Pharmacother. 2019;109:1851–9.

    Article  PubMed  CAS  Google Scholar 

  36. Li D, Tang X, Li M, Zheng Y. Long noncoding RNA DLX6-AS1 promotes liver cancer by increasing the expression of WEE1 via targeting miR-424-5p. J Cell Biochem. 2019;120:12290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Peng D, Cao Y, Zhu Y, Yin J, Zhang G, et al. Upregulated lncRNA DLX6-AS1 underpins hepatocellular carcinoma progression via the miR-513c/Cul4A/ANXA10 axis. Cancer Gene Ther. 2021;28:486–501.

    Article  CAS  PubMed  Google Scholar 

  38. Kong L, Zhang C. LncRNA DLX6-AS1 aggravates the development of ovarian cancer via modulating FHL2 by sponging miR-195-5p. Cancer Cell Int. 2020;20:370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu X, Ma X, Zhao S, Cao Z. DLX6-AS1 accelerates cell proliferation through regulating miR-497-5p/SNCG pathway in prostate cancer. Environ Toxicol. 2021;36:308–19.

    Article  CAS  PubMed  Google Scholar 

  40. Hu Y, Sun H, Hu J, Zhang X. LncRNA DLX6-AS1 promotes the progression of neuroblastoma by activating STAT2 via targeting miR-506-3p. Cancer Manage Res. 2020;12:7451–63.

    Article  CAS  Google Scholar 

  41. Jia P, Wei E, Liu H, Wu T, Wang H. Silencing of long non-coding RNA DLX6-AS1 weakens neuroblastoma progression by the miR-513c-5p/PLK4 axis. IUBMB Life. 2020;72:2627–36.

    Article  CAS  PubMed  Google Scholar 

  42. Liang Y, Zhang CD, Zhang C, Dai DQ. DLX6-AS1/miR-204-5p/OCT1 positive feedback loop promotes tumor progression and epithelial-mesenchymal transition in gastric cancer. Gastric Cancer. 2020;23:212–27.

    Article  CAS  PubMed  Google Scholar 

  43. Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, et al. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut. 2015;64:37–48.

    Article  CAS  PubMed  Google Scholar 

  44. Qian Y, Song W, Wu X, Hou G, Wang H, Hang X, et al. DLX6 antisense RNA 1 modulates glucose metabolism and cell growth in gastric cancer by targeting microRNA-4290. Dig Dis Sci. 2021;66:460–73.

    Article  CAS  PubMed  Google Scholar 

  45. Yang Q, Sun J, Ma Y, Zhao C, Song J. LncRNA DLX6-AS1 promotes laryngeal squamous cell carcinoma growth and invasion through regulating miR-376c. Am J Transl Res. 2019;11:7009–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Du C, Wang Y, Zhang Y, Zhang J, Zhang L, Li J. LncRNA DLX6-AS1 contributes to epithelial-mesenchymal transition and cisplatin resistance in triple-negative breast cancer via modulating Mir-199b-5p/Paxillin axis. Cell Transplant. 2020;29:963689720929983.

    Article  PubMed  Google Scholar 

  47. Wang X, Lin Y, Liu J. Long non-coding RNA DLX6-AS1 promotes proliferation by acting as a ceRNA targeting miR-199a in cervical cancer. Mol Med Rep. 2019;19:1248–55.

    CAS  PubMed  Google Scholar 

  48. Xie F, Xie G, Sun Q. Long noncoding RNA DLX6-AS1 promotes the progression in cervical cancer by targeting miR-16-5p/ARPP19 axis. Cancer Biother Radiopharm. 2020;35:129–36.

    CAS  PubMed  Google Scholar 

  49. Fang C, Xu L, He W, Dai J, Sun F. Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle. 2019;18:3288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Velázquez-Cruz A, Baños-Jaime B, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-translational control of RNA-binding proteins and disease-related dysregulation. Front Mol Biosci. 2021;8:658852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wu Q, Ma J, Meng W, Hui P. DLX6-AS1 promotes cell proliferation, migration and EMT of gastric cancer through FUS-regulated MAP4K1. Cancer Biol Ther. 2020;21:17–25.

    Article  CAS  PubMed  Google Scholar 

  52. Tewari D, Bawari S, Sharma S, DeLiberto LK, Bishayee A. Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacol Ther. 2021;227:107876.

    Article  CAS  PubMed  Google Scholar 

  53. Guo J, Chen Z, Jiang H, Yu Z, Peng J, Xie J, et al. The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway. Cancer Cell Int. 2019;19:312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Islam B, Suhail M, Khan M, Ahmad A, Zughaibi T, Husain F, et al. Flavonoids and PI3K/Akt/mTOR signaling cascade: apotential crosstalk in anticancer treatment. Curr Med Chem. 2021.

  55. De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol. 2021;95:2279–97.

    Article  CAS  Google Scholar 

  56. Ashrafizadeh M, Ang HL, Moghadam ER, Mohammadi S, Zarrin V, Hushmandi K, et al. MicroRNAs and their influence on the ZEB family: mechanistic aspects and therapeutic applications in cancer therapy. Biomolecules. 2020;10:1040.

    Article  CAS  PubMed Central  Google Scholar 

  57. Herrera A, Herrera M, Peña C. The emerging role of Snail1 in the tumor stroma. Clin Transl Oncol. 2016;18:872–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and indirect targeting of HOXA9 transcription factor in acute myeloid leukemia. Cancers (Basel). 2019;11:837.

    Article  CAS  Google Scholar 

  59. Rusan M, Andersen RF, Jakobsen A, Steffensen KD. Circulating HOXA9-methylated tumour DNA: a novel biomarker of response to poly (ADP-ribose) polymerase inhibition in BRCA-mutated epithelial ovarian cancer. Eur J Cancer. 2020;125:121–9.

    Article  CAS  PubMed  Google Scholar 

  60. Liu T, Ji C, Sun Y, Bai W. HOXA9 expression is associated with advanced tumour stage and prognosis in nasopharyngeal carcinoma. Cancer Manage Res. 2021;13:4147–54.

    Article  Google Scholar 

  61. Łukasik P, Załuski M, Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development-review. Int J Mol Sci. 2021;22:2935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ghelli Luserna di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol. 2020;13:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Montemagno C, Pagès G. Resistance to anti-angiogenic therapies: a mechanism depending on the time of exposure to the drugs. Front Cell Dev Biol. 2020;8:584.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam M. Emerging ways to treat breast cancer: will promises be met. Cell Oncol (Dordr). 2018;41:605–21.

    Article  CAS  Google Scholar 

  65. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet. 2021;397:1750–69.

    Article  CAS  PubMed  Google Scholar 

  66. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells. Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  67. Flaveny CA, Griffett K, Bel-D E, Kazantzis M, Sengupta M, Amelio AL, et al. Broad anti-tumor activity of a small molecule that selectively targets the warburg effect and lipogenesis. Cancer Cell. 2015;28:42–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer. 2016;138:809–17.

    Article  CAS  PubMed  Google Scholar 

  69. Austin CP. Translating translation. Nat Rev Drug Discov. 2018;17:455–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tan J, Fan J, He J, Zhao L, Tang H. Knockdown of LncRNA DLX6-AS1 inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway in lipopolysaccharide-induced acute kidney injury. J Bioenerg Biomembr. 2020;52:367–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the key project of the National significant R&D Program “Intergovernmental Cooperation in International Science and Technology Innovation” (grant number 2019YFE0119300) and National Natural Science Foundation of China (grant number 82074158).

Author information

Authors and Affiliations

Authors

Contributions

JQ and HC provided manuscript design. YL, PG, MW, HC, JL, TW and YJ had assistance with the manuscript review. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding authors

Correspondence to Jialin Qu or Hailong Chen.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The content of this manuscript has not been previously published and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Ge, P., Wang, M. et al. Research progress of DLX6-AS1 in human cancers. Human Cell 34, 1642–1652 (2021). https://doi.org/10.1007/s13577-021-00613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00613-0

Keywords

Navigation